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Plan…

• Today we extend our analysis into the multivariate plane.

• What this implies is simply that we extend the analysis that 

we have built on now into incorporating more than one 

variable into the volatility equation.



Readings

• Tsay (2012,2014) and Ruppert (2011) provide good overviews of MV-

GARCH models.

• Good methodological summaries:

• For good summaries of the multivariate volatility models:

Silvenoinen and Terasvirta (2008). Multivariate GARCH models

Bauwens, et al (2006). MULTIVARIATE GARCH MODELS: A SURVEY 

• Xekalaki chapter 11 also elaborates on the techniques discussed in the 

class and incorporating it into OX.

• Enders, chapter 3 touches on some of the basics of Multivariate (MV)-

Garch techniques .



What is a multivariate extension in the 

GARCH framework?

• Up to now, we have focussed on the volatility of returns of single series 

(univariate), which is of great practical importance.

• Today we begin to look at its extension into the multivariate plain – in 

order to study co-movements between series.

• Especially considering that the contemporaneous shocks to financial variables in 

the same market are typically highly correlated.

• As such – not controlling for the co-variance between the series studied leads to 

omitted variable bias

• Another great benefit to studying MV-GARCH models is that it allows us to 

estimate the volatility shock transmissions between series – which might 

give us a good indication of how shock-driven volatility persistence spills 

over to other series – very useful in studies determining the extent of shock 

contagion, e.g. (see e.g. Tse and Tsui, 2002).



What is a multivariate extension in the 

GARCH framework?

• The first attempts at extending the volatility modelling process into the 

multivariate framework was intuitively very simple – it basically involved a 

natural combination of all the univariate systems for each series, as follows:

• Suppose 𝑦𝑡 =
𝑌1
⋮
𝑌𝑁

= 𝑛𝑥1 vector of series (let’s suppose asset returns), so 

that 𝐸 𝑦𝑡 = 𝜇𝑡 = 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟.

• Then let 𝜀𝑡 = 𝑦𝑡 − 𝜇𝑡 = nx1 vector of stochastic residual series, so that 

the conditional variance / co-variance matrix (𝑯𝒕) would then be: 

𝐻𝑡 =

ℎ11,𝑡 ⋯ ℎ1𝑛,𝑡
⋮ ⋱ ⋮

ℎ𝑛1,𝑡 ⋯ ℎ𝑛𝑛,𝑡

and 𝜀𝑡~𝑁(0, 𝐻𝑡)



Before we set out… consider:

• We also assume that the residual series can be written as:

𝜀𝑡 = 𝐻𝑡. 𝜂𝑡, with 𝜂𝑡~𝑁(0, 𝐼)

• The literature on MV-GARCH is then about fitting the most 

appropriate variance-covariance matrix 𝑯𝒕.

• Before we look at how this is done, first consider that:

• The number of parameters (which can grow large rapidly as n 

increases!) – trade-off between parsimony and ability of the model to take 

into account the dynamics in the covariance structure.

• Also, the matrix needs to be positive definiteness is required– should 

this be implied by the modelling structure of 𝐻𝑡?



Positive Semi-Definiteness of 𝐻𝑡

• With 𝐻𝑡 being the variance-covariance matrix, it must 

hold that 𝐻𝑡 is positive definite – else the following 

could happen:

𝐻𝑡 =
1 0.05 0.90

0.05 1 0.95
0.90 0.95 1

Check for yourself that the determinant is negative.

Thus the covariance matrix is not positive definite.

But check for yourself – the above matrix 𝐻𝑡 makes no 

sense if off-diagonals are interpreted as correlations!!)



How we model 𝐻𝑡

• In this course we will be studying two broad ways of fitting 𝐻𝑡 :

1. By modelling 𝐻𝑡 directly – i.e. direct generalizations of the univariate 

approach – using the VECH and the BEKK models and its variants.

2. Non-Linear combinations of univariate G+ARCH models – by modelling 

the conditional variances and conditional correlations separately – i.s.o. 

modelling the Conditional Covariance matrix directly (this is a more 

parsimonious method) – we use the Conditional Correlation approaches, 

and its variants (CCC, DCC, ADCC, etc.)

Other methods (not discussed for brevity) include: Factor Modelling, where we 

assume 𝜀𝑡 is generated by unobserved heteroskedastic factors; and semi- and non-

parametric techniques: which include the Stochastic Volatility (SV)-approach and 

realized volatility (RV)



VECH model

• The first multivariate extension of the GARCH model was the VECH 

model of Bollerslev, Engle and Wooldridge (1988), which was basically 

the natural generalization of the univariate processes.

• In the two-variable case, it basically implies the following:

𝜀1,𝑡 = ℎ11𝑡. 𝜂1,𝑡 ; 𝜀2,𝑡 = ℎ22𝑡. 𝜂2,𝑡

𝒉𝟏𝟏,𝒕 = 𝑐10 + 𝛼11𝜀1,𝑡−1
2 + 𝛼12𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛼13𝜀2,𝑡−1

2

+(𝛽11ℎ11,𝑡−1 + 𝛽12ℎ12,𝑡−1 + 𝛽13ℎ22,𝑡−1)

𝒉𝟏𝟐,𝒕 = 𝑐20 + 𝛼21𝜀1,𝑡−1
2 + 𝛼22𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛼23𝜀2,𝑡−1

2

+(𝛽21ℎ11,𝑡−1 + 𝛽22ℎ12,𝑡−1 + 𝛽23ℎ22,𝑡−1)

𝒉𝟐𝟐,𝒕 = 𝑐30 + 𝛼31𝜀1,𝑡−1
2 + 𝛼32𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛼33𝜀2,𝑡−1

2

+(𝛽31ℎ11,𝑡−1 + 𝛽32ℎ12,𝑡−1 + 𝛽33ℎ22,𝑡−1)

ℎ11: variance 

process of 𝑦1

ℎ12: co-

variance of 𝑦1
& 𝑦2

ℎ22: variance 

process of 𝑦2



VECH model

• In the direct generalization on the previous slide, we basically have 

the conditional variance process of the two series conforming to 

the univariate GARCH(1,1) form:

ℎ𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝛽ℎ𝑡−1

• Now with:

𝜺𝟏,𝒕 depending on: 𝒉𝟏𝟏,𝒕 depending on:

Its own lagged squared errors:

(𝜀1,𝑡−1
2 )

the past of the variance of 𝑦1
ℎ11,𝑡−1

𝑦2
′𝑠 lagged squared errors:

(𝜀2,𝑡−1
2 )

the past of the variance of 𝑦2
(ℎ22,𝑡−1)

The product of the lagged squared

errors of both 𝑦1 & 𝑦2:
(𝜀1,𝑡−1𝜀2,𝑡−1)

The conditional covariance

between the two series (ℎ12,𝑡−1)



VECH model then in standard notation:

• 𝑉𝑒𝑐ℎ 𝐻𝑡 = 𝐶 + σ𝐴𝑗 𝑣𝑒𝑐ℎ 𝜀𝑡−1𝜀𝑡−1
′ + σ𝐵𝑗 𝑣𝑒𝑐ℎ 𝐻𝑡−1

• With 𝑉𝐸𝐶𝐻 → stack-operator that stacks the columns of the lower 

triangular part of the square matrix; 𝐶, 𝐴, 𝐵 → parameter matrices.

• I.e. for the three variable case, this implies:

𝐻11,𝑡
𝐻12,𝑡
𝐻22,𝑡

=

𝜔1

𝜔2

𝜔3

+

𝛼11 𝛼12 𝛼13
𝛼21 𝛼22 𝛼23
𝛼31 𝛼32 𝛼33

𝜀1,𝑡−1
2

𝜀1,𝑡−1𝜀2,𝑡−1

𝜀2,𝑡−1
2

+

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

ℎ11,𝑡−1
ℎ12,𝑡−1
ℎ22,𝑡−1

This technique has large demands on parameters  → e.g. for three variables it is: 

21, and for five variables it is already 465 parameters!!



Diagonal VECH

• To counter the large amounts of parameters – we can use the diagonalised

version of VECH (D-VECH) – with the obvious downside being the it does not 

accurately account for the dynamics of the conditional correlations.

• Thus the three variable DVECH(1,1) model is:

𝐻11,𝑡
𝐻12,𝑡
𝐻22,𝑡

=

𝜔1

𝜔2

𝜔3

+

𝛼11 0 0
0 𝛼22 0
0 0 𝛼33

𝜀1,𝑡−1
2

𝜀1,𝑡−1𝜀2,𝑡−1

𝜀2,𝑡−1
2

+

𝑏11 0 0
0 𝑏22 0
0 0 𝑏33

ℎ11,𝑡−1
ℎ12,𝑡−1
ℎ22,𝑡−1

• Which yields conditional variances for each series that is the same as the 

univariate GARCH process (ℎ11,𝑡 = 𝜔1 + 𝛼11𝜀1,𝑡−1
2 + 𝑏11ℎ11,𝑡−1), while the 

conditional covariance is also simply (ℎ12,𝑡 = 𝜔2 + 𝛼22𝜀1,𝑡−1𝜀1,𝑡−1
′
+ 𝑏22ℎ12,𝑡−1)

• Note that this model, although less parameter hungry – has no interaction 

between the different conditional variances and covariances and is often 

considered too restrictive in this regard.



Riskmetrics

• The Riskmetrics model (1996) developed by JP Morgan, uses an 

exponentially weighted moving average model (EWMA) to forecast 

variances and covariances, which in the two-variable case looks like:

ℎ𝑖𝑗,𝑡 = 1 − 𝜆 𝜀𝑖,𝑡−1𝜀𝑗,𝑡−1 + 𝜆ℎ𝑖𝑗,𝑡−1

Which is a Scalar VECH model (where the parameter matrices A&B are now 

scalars 1 − 𝜆 & 𝜆.

• The decay factor 𝜆 is suggested to be 0.94 for daily data and 0.97 for 

monthly.

• This makes the model easy to work with (and hence preferred by 

practitioners) – implying no need for parameter estimation…

• But not so easy to motivate empirically when applied to different data types.



BEKK-GARCH

• The Baba, Engle, Kraft & Kroner (BEKK) MV-GARCH extension to the 

VECH model essentially imposes the positive definiteness condition on the 

𝐻𝑡 −𝑚𝑎𝑡𝑟𝑖𝑥 as follows (for the bivariate case):

𝐻𝑡 = 𝐶′𝐶 + 𝐴𝜀𝑡−1𝜀𝑡−1
′ 𝐴′ + 𝐵′𝐻𝑡−1𝐵

Which implies that the parameter matrices are effectively squared, ensuring 

that the Covariance matrix 𝐻𝑡 is positive definite. In the 3 variable case:

𝐶 = 𝑙𝑜𝑤𝑒𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟; 𝐴&𝐵 = 3x3 𝑚𝑎𝑡𝑟𝑖𝑥

• This approach, although ensuring positive definiteness, can again be 

burdensome in terms of the amount of parameters needed to be specified.



BEKK Model

• From the BEKK model, the matrix A shows how conditional variances correlate with 

shocks or news impacts – measured by the past squared errors (𝜀𝑡
2)

• The matrix 𝐵 shows how past conditional variance affects contemporary conditional 

variance (i.e. persistence in conditional variance / volatility momentum)

• The bi-variate BEKK model written out is:

𝜀1,𝑡 = ℎ11𝑡. 𝜂1,𝑡 ; 𝜀2,𝑡 = ℎ22𝑡. 𝜂2,𝑡

𝒉𝟏𝟏,𝒕 = 𝑐11
2 + 𝛼11

2 𝜀1,𝑡−1
2 + 2. 𝛼11𝛼12𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛼21

2 𝜀2,𝑡−1
2

+(𝛽11ℎ11,𝑡−1 + 2𝛽11𝛽12ℎ12,𝑡−1 + 𝛽21ℎ22,𝑡−1)

𝒉𝟏𝟐,𝒕 = 𝑐12
2 + 𝛼11𝛼12𝜀1,𝑡−1

2 + (𝛼21𝛼21 + 𝛼11𝛼22)𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛼21𝛼22𝜀2,𝑡−1
2

+⋯

𝒉𝟐𝟐,𝒕 = ⋯

• (proofs of efficiency are in Engle and Kroner (1995))



BEKK Model

• Some of the most useful restrictions on the BEKK model include: the 

Diagonal BEKK model and the Scalar BEKK model.

• Diagonal-BEKK model: under the full-BEKK model on the previous slide, 

each parameter matrix A and B require 𝑛2 parameters to be estimated. 

• The Diagonal BEKK model restricts these matrices to be diagonal (with it 

being a more parsimonious model than the DVECH).

• Scalar BEKK model further reduces the parameter burden by assuming 

the same values hold for each element in 𝐴 & 𝐵, thus 𝐴 = 𝑎𝐼 (with 𝑎 =

𝑠𝑐𝑎𝑙𝑎𝑟)



Use of these multivariate models

• The main use of these models is in studying volatility spill-over effects. See Hassan 

& Malik’s paper who use a tri-variate full BEKK model to study volatility spill-overs 

between US sector indices (note the expansion of the tri-variate BEKK model on 

page 474).

• They use the tri-variate BEKK model to test whether there are any significant 

volatility spill-over effects from news (shock effect) emanating from other sectors, 

by viewing the parameters for 𝜀1,𝑡𝜀2,𝑡 & (𝜀1,𝑡𝜀3,𝑡), e.g., in the ℎ11,𝑡 equation  

(which would identify volatility spill-overs from news events from sector 2 → 1

and sector 3 → 1, respectively)

• And also from direct volatility spill-overs by viewing parameters for 

ℎ12,𝑡 & ℎ13,𝑡 (identifying volatility spill-overs from other sectors’ volatility, from 

sector 2 → 1 and sector 3 → 1, respectively)



BEKK(1,1)-GARCH-in-Mean model?

• Of course we can add a GARCH-in-mean extension to the MV-

GARCH process being studied, to account for the risk premium in 

terms of the mean equation too.

• The individual univariate GARCH specifications we did earlier can 

also be used in specifying the univariate processes: ℎ11,𝑡 , ℎ22,𝑡.



Some notable studies…

• Horvath study the spill-over effects of several countries’ aggregate 

share index (including SA) 

• {Another good example is Christopher, et al: Do sovereign credit ratings influence regional stock and 

bond market interdependencies in emerging countries?}

• They use a bi-variate BEKK model to study spill-overs

• The authors also fit the dynamic conditional correlations between each 

share market pair, defined as:

𝑝12,𝑡 =
ℎ12

ℎ11,𝑡ℎ22,𝑡

This allows us to get an estimate of the time-varying conditional 

correlation…



• Hassan and Malik use a Tri-variate GARCH model to study spill-over 

effects between the six largest US sectors. This paper discusses the 

methodology very clearly.

Due to the high amount of parameters and difficulty in estimation of higher order 

GARCH models, authors typically only do tri-variate BEKK GARCH models.

• Beirne, et al use a tri-variate BEKK-GARCH-(1,1)-in-mean model to 

study the spill-over effects of 41 EMEs in Asia, EU, South America 

and the Middle East.

• Their use of a full-trivariate BEKK model requires a large amount of 

parameters to be estimated! 



Department of Economics  

Dynamic Conditional Correlation 

Models



Motivation: Daily Returns to ZA and US Financial 

sectors – display periods of high and low 

correlations – implication on diversification?



Why Dynamic Conditional Correlations?

• Note from the calculated conditional correlations using the BEKK models – the 

variances and covariances are calculated separately, with the correlations 

inferred at the end.

• Engle, et al (2002) propose modelling the correlations as a dynamic, time-varying 

process directly.

• Doing so requires estimation of the conditional correlation matrix directly… 

and modelling univariate volatility estimates separately (2-step approach).

• This leads to gains in parsimony and a more direct approach to fitting dynamic 

correlations (as noted, BEKK and VECH suffer from parameter dimensionality, 

and becomes infeasible when 𝑘 > 3).

• It also allows flexibility i.t.o. specifying the univariate models.



CCC model

• Bollerslev (1990) was the first to propose the class of models 

that does what we set out to do in the previous few slides.

• This was the CCC (constant conditional correlation) model –

where the conditional correlations are kept constant over time.

• The main benefit of this approach is that it conserves parameter 

usage greatly (parsimonious benefits) and also simplifies the 

estimation procedure.

• The model looks as follows:



CCC model

𝐷𝑙𝑜𝑔 𝑌𝑖,𝑡 = 𝑟𝑖𝑡

𝑟𝑖𝑡 = 𝜇𝑖𝑡 + 𝜀𝑖𝑡

• 𝜇𝑖𝑡 → 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑛 𝑒𝑞 ;

• 𝜀𝑖𝑡 → 𝑐𝑜𝑛𝑑𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦 ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐 𝑒𝑟𝑟𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠

𝜀𝑖𝑡 = 𝐻𝑖𝑡 . 𝜂𝑖 , 𝑤𝑖𝑡ℎ 𝜀𝑖𝑡~𝑁 0,𝐻𝑡 & 𝜂𝑖~𝑁(0, 𝐼)

This is the same as last week.

The difference now comes in with how Bollerslev defined 

the 𝐻𝑡 −𝑚𝑎𝑡𝑟𝑖𝑥…



CCC model

• Under the CCC-model, the 𝐻𝑡 matrix is defined as:

𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡

With:

• 𝑫𝒕 = 𝑑𝑖𝑎𝑔( ℎ11𝑡, … , ℎ𝑁𝑁𝑡)

• 𝒉𝟏𝟏𝒕 → functional form (GARCH, EGARCH, TARCH, …) of the 

univariate model describing the conditional variance process of 𝑌1.

• 𝑹𝒊𝒋 → is a positive definite symmetric matrix (with ones on the 

diagonal) that describes the conditional correlations between the 

series 𝑌𝑖 & 𝑌𝑗 by the off-diagonal elements 𝜌𝑖𝑗 (𝑖 ≠ 𝑗). 



CCC model

• This can be written in matrix form as:

• 𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡 =

ℎ11 0 0

0 ℎ22 0

0 0 ℎ33

1 𝜌12 𝜌13
𝜌12 1 𝜌23
𝜌13 𝜌23 1

ℎ11 0 0

0 ℎ22 0

0 0 ℎ33

• Or for the bi-variate case written out as:

ℎ11𝑡 = 𝑐1 + 𝛼1𝜀11,𝑡−1 + 𝛽1ℎ11,𝑡−1

ℎ12𝑡 = 𝜌12 ℎ11,𝑡 . ℎ22,𝑡

ℎ22𝑡 = 𝑐2 + 𝛼1𝜀22,𝑡−1 + 𝛽1ℎ22,𝑡−1



CCC Output

• Note that from the output of the tri-variate CCC– we have time-varying co-variance 

and variance series, but we assume constant conditional correlations…
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Intuitively: what is going on?

• Note that what the CCC model effectively does is it assumes that the 

conditional variances of each series follow univariate GARCH 

models, while the conditional covariances are calculated by assuming 

the conditional correlations are kept constant.

• Thus it separates the calculation of 𝐷𝑡 (variance) and 𝐻𝑡 (variance-

covariance), by assuming constancy of 𝑅.

• This assumption of Conditional Correlation implies far less parameters 

are used in the process – but with the loss of the time-varying 𝝆𝟏𝟐 series 

we were able to calculate for the BEKK and VECH models.

• THUS: The dynamics of the covariance is only determined by 

the dynamics of the two conditional variances…



DCC – relaxing the constancy of the 

conditional correlations

• Despite the simplification benefits – this approach is not as intuitively 

appealing, as assuming constant correlations over time is a strong assumption.

• In response, Engle (2002) showed that the CCC model can be generalized so 

as to allow correlations between series to vary over time, while 

keeping the benefit of the CCC’s simplified calculation of univariate variances.

• In order to do so, we employ a two-step approach by:

1. Obtaining GARCH estimates of the univariate volatility models for each 

series (using whichever form – GARCH, EGARCH, …).

2. Using the standardized residuals (𝜂𝑡), extracted in step one, to estimate 

time-varying (dynamic) conditional correlations using a log-likelihood 

approach



DCC Model

• In step 1 we fit the univariate GARCH process for each series – to 

obtain the conditional variances used to standardize the residuals as 

follows:

𝜂𝑖,𝑡 = 𝜀𝑖,𝑡 / ℎ𝑖𝑖,𝑡

• Then we use these standardized residuals in the second step to make 

time-varying conditional correlations, done as follows: 

• First assume as before:

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡

With 𝑅𝑡 = time varying conditional correlations now.

Calculating these dynamic correlations then requires us to assume the 

following GARCH form to be fitted on the unconditional variance matrix:



DCC Model

• In step 1 we fit the univariate GARCH process for each series – to 

obtain the conditional variances used to standardize the residuals as 

follows:

𝜂𝑖,𝑡 = 𝜀𝑖,𝑡 / ℎ𝑖𝑖,𝑡

• Then we use these standardized residuals in the second step to make 

time-varying conditional correlations, done as follows: 

• First assume as before:

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡

With 𝑅𝑡 = time varying conditional correlations now.

Calculating these dynamic correlations then requires us to assume the 

following GARCH form to be fitted on the unconditional variance matrix:

Series i’s univariate 

GARCH model, e.g.

GARCH(1,1)

Returns series’ residuals (𝜀𝑡 = 𝑌𝑡 − 𝜇𝑡)

Standardized (WN) 

Vol equation resids



DCC Model

𝑄𝑖𝑗,𝑡 = 𝑄𝑖𝑗 + 𝛼 𝜂𝑖,𝑡−1𝜂𝑗,𝑡−1′ − 𝑄𝑖𝑗 + 𝛽(Q𝑖𝑗𝑡−1 − 𝑄𝑖𝑗)

So that:

𝑄𝑖𝑗,𝑡 = 1 − 𝛼 − 𝛽 .𝑄𝑖𝑗 + 𝛼 𝜂𝑖,𝑡−1𝜂𝑗,𝑡−1
′ + 𝛽 𝑄𝑖𝑗𝑡−1

Note this has a GARCH-form, with :

𝜂𝑖,𝑡−1 = 𝜀𝑖,𝑡−1 𝜎𝑖,𝑡−1
−1 → Standardised residuals from step 1

𝑄𝑖𝑗 → conditional variance &  𝑄𝑖𝑗 → the unconditional covariance of 

the standardized residuals estimated in step 1. 

As before we have restrictions 𝛼 + 𝛽 < 1 and each > 0.*

* (for a more detailed discussion of the math, see Engle (2002). Dynamic conditional correlation 

– a simple class of MV-GARCH).

Shock: unconditional - error Conditional Variance Process



DCC Model

• Because we estimated the unconditional variance and covariance 

processes in step 1 – all we now need to do is estimate the 

parameters 𝛼 & 𝛽 using MLE.

• Then we can derive the dynamic (time-varying) conditional 

correlation matrix, 𝑅𝑡, as follows:

𝑅𝑡 = 𝑄𝑖𝑖,𝑡
∗ −1

. 𝑄𝑖𝑗,𝑡 . 𝑄𝑗𝑗,𝑡
∗ −1

With 𝑄𝑖𝑗,𝑡
∗ → the diagonal matrix with entries along the diagonal equal 

to the squared diagonal of 𝑄𝑖𝑗,𝑡, or 𝑄𝑖𝑗,𝑡
∗ = 𝑑𝑖𝑎𝑔(𝑄𝑖𝑗,𝑡)

(resembling, if you like, the 𝐷𝑡 matrix with ℎ𝑖𝑖,𝑡 as diagonals, only now it is 𝑞𝑖𝑖,𝑡)



DCC Model

• Thus from the previous slide, what we are doing is fitting the 𝑅𝑡 matrix 

having the following elements:

𝜌𝑖𝑗,𝑡 =
𝑞𝑖𝑗,𝑡

𝑞𝑖𝑖,𝑡 . 𝑞𝑗𝑗,𝑡

=
1 − 𝛼 − 𝛽 ത𝑞 + 𝛼. 𝜂𝑖,𝑡−1𝜂𝑗,𝑡−1

′ + 𝛽. 𝑞𝑖𝑗,𝑡−1

( 1 − 𝛼 − 𝛽 ഥ𝑞𝑖 + 𝛼. 𝜂𝑖,𝑡−1
2 + 𝛽. 𝑞𝑖𝑖,𝑡−1))( 1 − 𝛼1 − 𝛽 ഥ𝑞𝑗 + 𝛼. 𝜂𝑗,𝑡−1

2 + 𝛽. 𝑞𝑗𝑗,𝑡−1))

Note that 𝑅𝑡 has diagonals= 1 and off-diagonals = conditional correlations

This is done using Log-likelihood maximization of the function.

This process (as noted in Engle (2002)) is consistent in its two step approach, 

and greatly reduces the amount of parameters as 𝑁 → ∞



DCC Model

• As suggested in Bauwens, et al (2006: 90) a drawback of the DCC 

approach is that it assumes the dynamic correlation process to behave the 

same over time in reaction to past shocks.

• For the equation of 𝑄𝑖𝑗,𝑡 - note that the structure is constant over time.

• This might not be the case (i.e. 𝛼 & 𝛽 might well change over time) and 

can be considered a serious drawback to the approach.

• Another drawback is that the equation for 𝑄𝑖𝑗,𝑡 does not differentiate 

between positive and negative shocks. I.e. it has no built-in leverage 

function. This is addressed in the ADCC model



Flexibility…

• As the DCC estimation procedure uses an

efficient 2-step procedure, it is insensitive to the

specification of the univariate approach used.

• The only input into step 2 from step 1 (other than

the sample / unconditional covariance estimates,

ത𝑄) is the standardized residuals.

• Thus we can choose any univariate GARCH

specification, and control for spill-overs as well – as long

as we have cleaned standardized residuals as input (𝜂𝑖)



DCC model in R
• #  First specify the univariate normal GARCH(1,1) for each series

• > garch11.spec = ugarchspec(mean.model = list(armaOrder = 

c(0,0)),

• + variance.model = list(garchOrder = c(1,1),

• + model = "sGARCH"),

• + distribution.model = "norm")

• # Then do the dcc specification - GARCH(1,1) for conditional 

correlations

• > dcc.garch11.spec = dccspec(uspec = multispec( replicate(2,

• garch11.spec) ),

• + dccOrder = c(1,1),

• + distribution = "mvnorm")

• > dcc.fit = dccfit(dcc.garch11.spec, data = MSFT.GSPC.ret)

• > slotNames(dcc.fit)

• [1] "mfit" "model"

• > names(dcc.fit@mfit)

• > names(dcc.fit@mfit)

• > plot(dcc.fit)

mailto:dcc.fit@mfit


Graphical representation of DCCs



ADCC Model

• Cappiello, et al (2006) proposed the introduction of leverage

effects into the DCC model.

• This was done by extending the 𝑄 − equation as follows:

𝑄𝑖𝑗,𝑡 = 1 − 𝛼 − 𝛽 . ത𝑄 − 𝑔 𝑊𝑡 + 𝛼 𝜂𝑖,𝑡−1𝜂𝑗,𝑡−1
′ + 𝛽 𝑄𝑖𝑗,𝑡−1 + 𝑔(𝜉𝑖,𝑡−1𝜉𝑗,𝑡−1

′ )

Where:

𝜉𝑖,𝑡−1 = 1. 𝜂𝑖,𝑡
2 𝑖𝑓 𝜂𝑖,𝑡 < 0, 𝑧𝑒𝑟𝑜 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝑡 = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓(𝜉𝑖,𝑡−1 𝜉𝑗,𝑡−1
′ ) using sample analogue, thus:

𝐸 𝜉𝑖,𝑡−1 𝜉𝑗,𝑡−1
′ ≈

1

𝑛
෍(𝜉𝑖,𝑡−1 𝜉𝑗,𝑡−1

′ )



ADCC Model

• From the ADCC model, we can then interpret the coefficient 𝑔, which

is the asymmetric response of the conditional correlation series

following negative shocks.

• Typically, financial returns display a significant increase in their

correlations during negative return events – which limits the

diversification potential during system wide downward asset price

adjustments.

𝛼
𝛽
𝛾



Summary of the MVGARCH models

• The variance-covariance matrix is given as:

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡

• CCC model: 𝑅𝑡 = 𝑅

• DCC model: 𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 ;    𝐷𝑡 = 𝑄𝑡
∗ = 𝑑𝑖𝑎𝑔 𝑄𝑡

𝑅𝑡 = 𝑄𝑖𝑗,𝑡
∗ −1

. 𝑄𝑖𝑗,𝑡 . 𝑄𝑖𝑗,𝑡
∗ −1

;   

𝑄𝑖𝑗,𝑡 = 1 − 𝛼 − 𝛽 . 𝑄𝑖𝑗 + 𝛼 𝜂𝑖,𝑡−1𝜂𝑗,𝑡−1
′ + 𝛽 𝑄𝑖𝑗𝑡−1

• ADCC model:  Adds 𝑔(𝜉𝑖,𝑡−1𝜉𝑗,𝑡−1
′ ) to the 𝑄𝑖𝑗𝑡 equation



Orthogonal-GARCH (O-GARCH)

• O-GARCH combines the insights that we learnt from PCA analysis to 

reduce the dimensionality of a MV-GARCH estimation procedure…

• In particular, it assumes the observed data is generated by an orthogonal 

transformation of N-univariate GARCH processes. 

• The data is then linearly transformed using the orthogonal matrix of 

eigenvectors of the population of the sample unconditional covariance 

matrix of the standardized returns series (Note – factor models can also be 

used as orthogonalizing the system)



Orthogonal-GARCH (O-GARCH)

• The O-GARCH(1,1, 𝑘) is then defined as:

𝑌𝑡 = 𝜇𝑡 + 𝜖𝑡

𝜖𝑡 = 𝑉1/2. 𝑢𝑡

𝑢𝑡 = 𝑍𝑘𝑓𝑡

With 𝑉𝑡 → 𝑑𝑖𝑎𝑔(𝑣1, … 𝑣𝑁), the population variance of 𝜖𝑡

𝑍𝑘 = 𝑃𝑘 . 𝐿𝑘
1/2

= 𝑃𝑘 . 𝑑𝑖𝑎𝑔(𝑙1
1/2

, … , 𝑙𝑘
1/2

)

𝑙1 > ⋯ > 𝑙𝑘 → the 𝑘 largest eigenvalues of the population correlation 

dispersion matrix of 𝜖𝑡

𝑃𝑘 → the associated eigenvectors of the 𝑘 −eigenvalues



Orthogonal-GARCH (O-GARCH)

• Then:

𝐸𝑡−1 𝑓𝑡 = 0 & 𝑉𝑎𝑟𝑡−1 = σ𝑡 = 𝑑𝑖𝑎𝑔(𝜎𝑓1,𝑡
2 , … , 𝜎𝑓𝑘,𝑡

2 )

And

𝜎𝑓𝑖,𝑡
2 = 1 − 𝛼𝑖 − 𝛽𝑖 + 𝛼𝑖𝑓𝑡−1

2 + 𝛽𝑖𝜎𝑓𝑡−1
2 , ∀ 𝑖 = 1, …𝑘

Then:

𝐻𝑡 = 𝑉𝑎𝑟𝑡−1 𝜖𝑡 = 𝑉1/2 𝑉𝑡 𝑉
′1/2

With

𝑉𝑡 = 𝑉𝑎𝑟𝑡−1 𝑢𝑡 = 𝑍𝑘 σ𝑡 𝑍𝑘′



Orthogonal-GARCH (O-GARCH)

• We choose 𝑘 by applying PCA on the standardized residuals (With 𝑉

calculated by taking the sample (unconditional) variance estimate) –this we 

can do by viewing a scree plot, e.g.

• It effectively estimates 𝑘 − univariate GARCH(1,1) {or any other univariate

form} models in order to reduce the dimensionality of the system.



Orthogonal-GARCH (O-GARCH)

• O-GARCH thus involves 3 steps:

1. Calculating the conditional mean equation (may include explanatory factors or 

be ARFIMA)

2. Compute 𝑃𝑘 & 𝐿𝑘 by means of PCA

3. Fit 𝑘 − GARCH-type models on 𝑓𝑖,𝑘 using QMLE.



GO-GARCH

• Van der Weide propsed a generalized form of the O-GARCH model, 

that relaxes the orthogonality condition of the previous, by assuming 𝑍 is 

square and invertible, i.s.o. necessarily orthogonal, and is not restricted 

to be triangular.

• Thus he proposes:

𝑍𝑘 = 𝑃𝑘𝐿𝑘
1/2

𝑈

with 𝑈 → 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙, 𝑈 = Π 𝐺𝑖𝑗 𝛿𝑖𝑗 , 𝑤𝑖𝑡ℎ 𝐺𝑖𝑗 𝛿𝑖𝑗 performing rotations 

in the 𝑖, 𝑗 −plane (𝐺 → matrix of sinus and cosinus functions)

The O-GARCH is a special case where 𝑈 = 𝐼𝑘



GO-GARCH-NLS

• See Boswijk and van der Weide (2006) for 

their extension of the GO-GARCH by 

using NLS as opposed to QMLE



GOGARCH Presentation

• I uploaded a presentation on work that I did using 

GOGARCH models and a large panel set of bivariate EM 

conditional correlations and what drives it.

• The slides contain more of the technicalities of the 

GOGARCH techniques.



Check the Literature

• Other readers include:

• Antoniou & Pescetto (2007) who combine DCC estimates and BEKK

estimates to identify conditional correlations and conditional volatility 

spill-overs, respectively, across international stock markets and 

industrial sectors.

• Johannson uses, instead of a two-step approach, a joint estimation of 

the DCC. He also fits an ADCC model. 

• Interestingly his mean equation also is a VECM of the series.

• This paper has some really good definitions and is a good paper to get tips 

on your methodology.

• His interpretations of the coefficients are also very clear.



Right… Back to the practical class!


