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Texts used

• The notes and code in R were created using many 
references. 

• Intuitively, Brookes explains volatility modelling 
well, as does Tsay (2012,2014)  and Ruppert
(2011)

• Also, read the following paper which explains the 
different GARCH models and distributions very 
well: Hentschel (1995). All in the family…



Modelling Volatility - importance

• In financial markets we take as a stylized fact that risk requires a 

premium in terms of its expected pay-off. This implies that investors 

should be compensated for taking on higher risk.

• In this section we look at uncovering predictable patterns in the volatility 

of financial time-series data.

• In particular we will see whether we could fit an autoregressive 

process on the second moments (variance component) of our 

series in order to see whether it shows persistence during certain 

periods.

• Think back on the Global Financial Crisis – remember how volatile global 

markets were… Let’s look at the J203 (JSE All Share Index) TRI



Weekly J203 Total Return Index

• From this graph, the crisis period in 2008 – 2009 shows a clear 

downward momentum in the market.



Standard procedure follows…

• If you look closely, you will see the level increase in volatility 

over time – requiring the Logarithmic form.

• You will also notice strong mean persistence and also time 

dependency on the mean.

• After taking the Log, we see that the ADF test rejects 

stationarity, requiring us to take the difference to remove the 

unit root.

• That means we take the dlog of the J203 series, which yields 

the following graph:





Fitting ARIMA model on J203

• From the graph of the Dlog(J203), we can clearly see there still remains 

significant persistence in the series… Although it now resembles something 

closer to stationarity…

• In order to make the residuals of the J203 White Noise – we now include 

autoregressive components to the model {The correlogram suggests 

including the AR(1) MA(1) terms} – thus an ARIMA(111) model is fitted.

• Looking at the Ljung-Box Q-stats and the correlogram of the ARIMA(111), 

the residuals seem now to be well-behaved (White Noise). 

• This allows us then to use the model in making forecasts / including it in 

other regressions.



Correlogram of ARIMA(1,1,1) for J203



Residuals graph of the ARIMA(111) J203:



Are the residuals really well behaved?

• Considering the correlogram and the graph of the residuals, it 

seems as though the residuals of the univariate autoregressive 

model is well-behaved.

• It seems now appropriate to conduct time-series analysis using 

this model, as it shows stationarity with White Noise residuals.

• But let’s look a bit closer… Notice that there are periods 

where the volatility seems to cluster, i.e. periods where there 

seems to be market momentum (check how the periods in blue 

differ from those in red in terms of their variance…)



Residuals graph of the ARIMA(111) J203:



Periods of persistence

• As seen in the above graph of the J203 series, there are periods where 

the series displays strong persistence and periods of higher than 

normal volatility (red vs blue periods).

• Often such period’s volatility is conditional upon the previous period’s 

volatility being above normal, creating a sort of volatility momentum

carried into the next period.

• If left uncontrolled for, this momentum in the residuals will negatively 

impact the fit of our model.

• Thus controlling for this volatility conditional on the previous period’s 

volatility (or conditional heteroskedastic periods) is the aim of this 

session.



Conditional heteroskedasticity

• Heteroskedasticity we normally associate with cross 

sectional studies, whereas time series data sets we 

assume them to be made homoskedastic. 

• Engle (1982, 1983), however, presented evidence that 

most financial time-series data sets display periods of 

persistence in volatility in terms of error variances.

• Initially, work was done on models of inflation where 

varying sizes of forecast errors seemed to cluster, 

suggesting a form of heteroskedasticity in which the 

variance of a forecast error depends on the size of the 

previous period’s disturbance(s). 



Importance of homoskedastic assumption

• Remember from our definition of stationarity – we assumed 

the residuals to be homoskedastic (have a constant, time-

invariant variance).

• As we assume the residuals to have a zero mean, that would 

imply that 𝑉𝑎𝑟 𝜀𝑡 = 𝐸 𝜀𝑡
2 − 𝐸 𝜀𝑡

2 ≈ 𝐸 𝜀𝑡
2 = c under 

homoskedasticity.

• But this is where Engle showed that there can be 

persistence still remaining – in the squared residual term –

even though the residual term may display White Noise.
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Resid squared graph (𝜀𝑡
2)

• From this graph we can

see that there definitely

are periods of

increased persistence

& momentum in the

volatility process (as

proxied for by 𝜀𝑡
2).



ARCH background

• The Conditional Heteroskedastic (ARCH) model was first proposed to take into 

account this autocorrelation (or serially dependent) of the (or serially 

dependent) error variances displayed at certain periods.

• The ARCH process similar to that of the ARIMA family, as it controls for periods 

of volatility persistence in the residual process specifically.

• Soon after the initial specification on inflation data, other studies pointed to the 

application of such techniques to fields ranging from term-structures of interest 

rates, stock market return volatility, foreign exchange behaviour, inflation 

modelling, etc.



No “con” in conditional…

• Although we assume our time series (after stationarity transformations) is

made time invariant, the earlier models only consider the unconditional (or

long run) constant -means and –variance processes over time.

• Thus unconditional forecasts would imply forecasting using only the long run

mean.

• Following Engle’s approach: although the residuals may be homoskedastic in

the long run (Unconditionally homoskedastic), the short run behaviour of the

variance structure might be time-dependent – i.e. showing the presence of

conditional heteroskedasticity (which is persistence in the variance structure

conditional upon a past period higher-than-normal variance).

• This gives us, by definition (See Enders : 126), better forecasts than

unconditional forecasts.



Up to now…

• We made: 𝐸 𝜀𝑡 = 0 (using an ARMA model / a regression fit of 𝑦𝑡)
• And we assumed: Var 𝜀𝑡 = 𝐸 𝜀𝑡

2 − 0 = h2 = 𝑡𝑖𝑚𝑒 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡

• One way to now model a non-constant error variance that displays 
periods of persistent volatility, is by fitting an AR(p) process on the 
squared residuals:

 𝜀𝑡
2 = 𝛼 0 + 𝛼 1  𝜀𝑡−1

2 + 𝛼 2  𝜀𝑡−2
2 +⋯+ 𝛼 𝑝 𝜀𝑡−𝑝

2 + 𝜂𝑡

𝑊𝑖𝑡ℎ ∶ 𝜂𝑡 ≡ 𝑊ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒

• From this, if the 𝛼′𝑠 are all zero, it implies the error variance [E( 𝜀𝑡
2)] is 

constant, and thus homoskedastic (and no conditional 
heteroskedasticity is present)

• This process of fitting an AR to the squared residuals is known as ARCH
modelling.



ARCH specification

• We normally specify multiplicative disturbance terms, using ML techniques to simultaneously 

estimate the parameters. Thus the simplest form of ARCH specification is the ARCH(1) model:

𝑦𝑡 = 𝜇𝑡 + 𝜀𝑡

𝜀𝑡 = 𝜂𝑡. ℎ𝑡 = 𝜂𝑡. 𝛼0 + 𝛼1𝜀𝑡−1
2

With:

𝒚𝒕 made stationary by the model 𝝁𝒕 (which can be an ARIMA process, or contain explanatory 

variables, etc.). 

𝜺𝒕 displays stationarity, but the squared residuals (𝜺𝒕
2) show autoregressive [AR(1)] behaviour

𝜂𝑡 ≡ 𝑊ℎ𝑖𝑡𝑒 𝑁𝑜𝑖𝑠𝑒~𝑁 0,1

ℎ𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 → 𝐴𝑅𝐶𝐻 1 variance process

Restriction : 𝛼0 > 0; 0 < 𝛼1 < 1 , cause we can’t have negative variance…



Unconditional moments: Mean

From the ARCH(1) model: 𝑦𝑡 = 𝜇𝑡 + 𝜀𝑡

𝜀𝑡 = 𝜂𝑡 . ℎ𝑡 = 𝜂𝑡. 𝛼0 + 𝛼1𝜀𝑡−1
2

it follows (as before) that:

• 𝐸(𝜀𝑡|𝜇𝑡) = 𝐸 𝜂𝑡 𝛼0 + 𝛼1𝜀𝑡−1
2 = 𝐸 𝜂𝑡 . 𝛼0 + 𝛼1𝐸(𝜀𝑡−1

2) = 0

(Due to independence of 𝜂𝑡 & ℎ𝑡 & the fact that: 𝜂𝑡 ≡ 𝑊𝑁)

• Thus : 𝐸 𝑦𝑡 = 𝜇𝑡, {which is 𝛽0 + 𝛽1𝑦𝑡−1 if 𝜇𝑡 is an AR(1) process}

(which is the classic regression specification)

• But : the variance of 𝜺𝒕 differs from before…

• In particular, we will show that it is Unconditionally constant, but Conditionally

dependent on past variances…



Unconditional moments: Variance

• The unconditional variance:

𝑉𝑎𝑟 𝜀𝑡|𝜇𝑡 = 𝐸 𝜀𝑡
2|𝜇𝑡 = 𝐸 𝜂𝑡

2. 𝛼0 + 𝛼1𝜀𝑡−1
2 | 𝜇𝑡

= 𝐸 𝜂𝑡
2 . 𝐸 𝛼0 + 𝛼1𝜀𝑡−1

2 = 1. 𝛼0 + 𝛼1𝐸 𝜀𝑡−1
2

• So that : 𝑉𝑎𝑟 𝜀𝑡 = 𝛼0 + 𝛼1𝑉𝑎𝑟 𝜀𝑡−1

• If the residuals can be assumed stationary, the unconditional variances are equal 

over time, so that we have:    {𝑉𝑎𝑟 𝜀𝑡 = 𝑉𝑎𝑟 𝜀𝑡−1 }:

𝑉𝑎𝑟 𝜀𝑡|𝜇𝑡 = 𝛼0 + 𝛼1𝑉𝑎𝑟 𝜀𝑡−1 =  𝛼0 1 − 𝛼1

→ Which is constant

• And we then have the unconditional (LR) distribution of the residuals as: 

𝜀𝑡~N(0,  𝛼0 1 − 𝛼1)

• Also, unconditional autocovariances are zero : E(𝜀𝑡, 𝜀𝑡−1|𝜇𝑡) = 0



Conditional moments

• Notice that the unconditional mean, variance & autocovariances of the residuals was 

unaffected by the presence of the ARCH error process.

• The conditional mean (conditional on past residuals) is found as:

𝐸 𝜀𝑡 𝜀𝑡−1 = 𝛼0 + 

𝑖=1

𝑝

𝛼𝑖 𝐸𝑡−1(𝜀𝑡) = 𝐸𝑡−1(𝜂𝑡 𝛼0 + 𝛼1𝜀𝑡−1
2) = 0

• And the conditional variance is found as:

𝑉𝑎𝑟 𝜀𝑡 𝜀𝑡−1 = 𝑉𝑎𝑟𝑡−1 𝜂𝑡 𝛼0 + 𝛼1𝜀𝑡−1
2 =

(1). 𝐸𝑡−1 𝛼0 + 𝛼1𝜀𝑡−1
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• Thus the variance of 𝜀𝑡 conditional upon its past residuals (and not conditional on 𝜇𝑡 as 

studied before) is not constant, and thus displays conditional heteroskedasticity



Martingale System

• Remember, by definition – a martingale series has the following attributes wrt

itself and any other stochastic process (𝑋𝑡) – making it essentially unpredictable:

𝐸 𝑌𝑡+1 𝑋𝑡, …𝑋𝑡−𝑝) = 0, ∀𝑡

Which implies:

𝐸 𝑌𝑡+1 𝑌𝑡, … 𝑌𝑡−𝑝) = 𝐸(𝑌𝑡+1 𝑌𝑡 = 0

→ 𝑇ℎ𝑢𝑠 𝑛𝑜𝑡 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

𝐸 𝑌𝑡+1 = 0

But this does not imply the following:

𝑉𝑎𝑟 𝑌𝑡+1 𝑋𝑡, 𝑋𝑡−1, … = 0

In fact, even if the variance function could be predictable based on the past, the 

series’ mean could remain unpredictable! – thus conditional heteroskedasticity

could be present!



Conditional dependence of volatility

• Notice that if 𝜀𝑡−1 is large, we expect the conditional variance in the next 

period to be large as well.

• In order for both the unconditional and the conditional variance to be 

positive, we need the restriction to hold that: 𝛼0 > 0; 𝛼1 > 0

• Also : in order for the conditional variance to be a finite AR-process, 0 <

𝛼1 < 1must hold.

• In summary then, both the conditional and unconditional expected errors 

are zero, the errors are serially uncorrelated {E(𝜀𝑡, 𝜀𝑡−1|𝜇𝑡) = 0}, while the 

conditional variance of the error terms are dependent on its own lagged 

values  implying the existence of persistent volatility in the error terms.



ARCH(p)

• Extending the ARCH theory to a pth order follows simply as extending the autoregressive 

residual process (defined as ℎ𝑡
2 now):

ℎ𝑡 = 𝛼0 +  𝑖=1
𝑝
𝛼𝑖𝜀𝑡−𝑖
2

• With the unconditional variance (if 𝜀𝑡 →made stationary):

• 𝑉𝑎𝑟 𝜀𝑡 = 𝑉𝑎𝑟 ℎ𝑡 . 𝜂𝑡 =  𝛼0 (1 −  𝑖=1
𝑝
𝛼𝑖) → 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

With constraints : 𝜶𝟎 > 𝟎, 𝜶𝒊 > 𝟎 (∀ 𝒊), 𝟎 <  𝒊=𝟏
𝒑
𝜶𝒊 < 1

• Conditional variance

• 𝑉𝑎𝑟𝑡−1 𝜀𝑡 𝜀𝑡−1, … , 𝜀𝑡−𝑝 = 1. ℎ𝑡
2 = 𝛼0 +  𝑖=1

𝑝
𝛼𝑖𝐸𝑡−1(𝜀𝑡−𝑖

2) = 𝛼0 +  𝑖=1
𝑝
𝛼𝑖𝜀𝑡−𝑖
2

→ 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍𝒍𝒚 ℎ𝒆𝒕𝒆𝒓𝒐𝒔𝒌𝒆𝒅𝒂𝒔𝒕𝒊𝒄



Formalized Notation of ARCH(p)

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝜀𝑡

{𝑥𝑡 can be an ARMA process with exogenous variables → called the mean equation}

𝜀𝑡 = ℎ𝑡 . 𝜂𝑡 ; ℎ𝑡= 𝛼0 + 

𝑖=1

𝑝

𝛼𝑖𝜀𝑡−𝑖
2 ;

ℎ𝑡~𝐴𝑅𝐶𝐻 𝑝 → variance equation
𝜂𝑡~𝑊𝑁(0,1)

With constraints : 𝛼0 > 0, 𝛼𝑖 > 0, 0 < 

𝑖=1

𝑝

𝛼𝑖 < 1

𝜺𝒕 = 𝐨𝐫𝐝𝐢𝐧𝐚𝐫𝐲 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥𝐬 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐴𝑅𝐼𝑀𝐴 𝑚𝑜𝑑𝑒𝑙

𝜂𝒕 = 𝜀𝑡/ℎ𝑡 ~𝑁 0,1 = 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝𝐢𝐳𝐞𝐝 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥𝐬 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐴𝑅𝐶𝐻 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝐴𝑙𝑠𝑜, 𝑡ℎ𝑒 𝐴𝑅𝑀𝐴 𝑎𝑛𝑑 𝐴𝑅𝐶𝐻 𝑜𝑟𝑑𝑒𝑟𝑠 𝑜𝑓𝑥𝑡 𝑎𝑛𝑑 h𝑡 𝑛𝑒𝑒𝑑 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑡𝑒!



Unpacking the previous slide

• 𝑥𝑡 is the unconditional (Long run) mean of 𝑦𝑡

• 𝜀𝑡 is the ordinary residual [𝜺𝒕 = 𝑦𝑡 − 𝑥𝑡 → hence the ordinary residuals], 

which is serially uncorrelated,  BUT dependent on previous lags through its 

second moment…  

• This autoregressive dependence is clear from the conditional variance 

term : [𝒉𝒕] , which is an autoregressive function of the lags of 𝜺𝒕
𝟐.

 𝒉𝒕 thus is called the conditional variance as it is the part of the 

variance which is conditional on past trends in volatility (error variance).

• [𝜼𝒕] is then called the standardized residuals, as it has controlled for the 

conditional heteroskedasticity in the ordinary residuals :  𝜂𝒕 = 𝜺𝒕/𝒉𝒕

𝜼𝒕~𝑁 0,1 → thus implying we should have WN std resids after fitting ARCH!



Uncorrelated, but dependent…

• Notice that the above framework implies the series can be serially uncorrelated

and have stationary ordinary residuals that are unconditionally homoskedastic, 

but at times display heteroskedasticity conditional on past shocks…

• Thus the ordinary residuals, although uncorrelated, are dependent on past 

shocks.

• This implies that the ARCH model is able to capture periods of tranquility and 

volatility in our series {𝑦𝑡}!

• Thus, after fitting the conditional variance equation, we should have :

• Stationary ordinary residuals (serially uncorrelated, but dependent)

• White Noise standardized residuals which implies after taking into account the 

conditional heteroskedasticity, our standardized residuals are WN (serially 

uncorrelated and independent).



Can we trust ACF tests in the presence of 

conditional heteroskedasticity?

• Standard Portmanteau tests like the Box-Pierce or LBQ-

stats used for assessing serial dependence – will be fatally 

biased in the presence of heteroskedasticity.

• This follows as the critical values calculated for these tests 

do not account for the presence of dependence on past 

second order moments (conditional heteroskedasticity) and 

thus are not longer 𝜒2 − distributed.

• As a result, Francq and Zakoian (2009) proposed a 

corrected Portmanteau test in presence of GARCH effects: 

The robust LBQ stats.



Robust ACF tests in OxMetrics (for interest sake, if 

you ever use OX again…)



Robust ACF

• As seen, ordinary ACF tests over-reject the null 

of no serial autocorrelation. F&Z show that it 

rejects more than double the amount using 

simulated data.



Testing for conditional heteroskedasticity

• A formal way of GARCH testing is to use the Lagrange 

Multiplier (LM) test on the squared residuals.

• Engle (1982) suggests basing the LM test on the auxiliary 

regression:

 𝜀𝑡
2 = 𝛼0 + 𝛼1

 𝜀𝑡−1
2 +⋯+ 𝛼𝑝

 𝜀𝑡−𝑝
2

With the 𝑅2 of the regression then used to construct the test stat 

𝑇𝑅2. This statistic is then assymptotically distributed as a 𝜒2 under 

the null of no ARCH effect up to lag 𝑝 .

Caution here is that if the mean equation is misspecified, we might mistake 

persistence in the residuals for persistence in the squared resids…



Fractional Integration

• As finding the right mean equation is vital prior to focussing on the 

second order moments, let’s consider the mean equation some 

more.

• In many studies it has been shown that series can and do at times 

exhibit significant serial autocorrelation between periods widely 

separated in time.

• This is defined as the data having long memory.

• Such series are then best modelled using Fractional integration (so 

as to account for longer term persistence), as first differencing 

completely removes past dependence structures and focuses on 

short term dynamics.



Fractional Integration

• Fractional Integration can be achieved by using the ARFIMA class models 

developed by Granger and Joyeux (1980).

• With 𝐴 𝐿 = 𝐴𝑅 𝑡𝑒𝑟𝑚𝑠 & 𝐵 𝐿 = 𝑀𝐴 𝑡𝑒𝑟𝑚𝑠, fractional integration implies:

𝐴 𝐿 1 − 𝐿 𝛿 𝑦𝑡 − 𝜇𝑡 = 𝐵 𝐿 . 𝜀𝑡

With 1 − 𝐿 𝛿 being the long memory of the process, and defined as:

1 − 𝐿 𝛿 =  

𝑘=0

∞
Γ 𝛿 + 1

Γ 𝑘 + 1 Γ 𝛿 − 𝑘 + 1
𝐿𝑘

= 1 − 

𝑘=1

∞

𝑐𝑘 𝛿 𝐿
𝑘

( 0 < 𝛿 < 1 , 𝑐𝑘 =
1

𝑘
𝛿 1 − 𝛿 k−1, Γ = 𝐺𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 )



Fractional Integration

• Standard unit root tests are unable to effectively distinguish between 

truly 𝐼(1) series and series displaying structural breaks, or strong 

dependence on observations in the past – i.e. not necessarily immediate 

past but longer term memory.

• The KPSS unit root test allows for the series to be fractionally 

integrated and should be used in the presence of potential long memory



Fractional Integration

• Although 𝛿 can take on any values, the series is both stationary and 

invertible if 𝛿 ∈ (−0.5 , 0.5). If it exceeds 0.5, it is nonstationary as it 

then possesses infinite variance (see Granger and Joyeux). Thus:

• 𝛿 ∈ 0; 0.5 → the autocorrelations decay hyperbolically to zero (as 

opposed to the geometric decay of ordinary ARMA process) – thus 

accounting for LT memory

• 𝛿 ∈ −0.5 ; 0 → the process exhibits LR negative dependence (anti-

persistence).

• 𝛿 → 0, implies the process exhibits only short term memory (stationary 

and invertible ARMA)

• 𝛿 ∈ 0.5; 1 → the proc has strong persistence, probably requiring FD.



Fractional Integration

• A long memory process is thus 𝐼(𝑑), and should be accounted for 

by fitting an ARFIMA model.

• With financial returns series, however, this assumption might be a 

bit strong – as it effectively then assumes long memory in returns, 

and by definition thus violates weak market efficiency…

• Here is the KPSS and Long memory test for SA Financials series:

Long Memory test:



Test for long memory (again in Ox)



Fractional Integration

• So for now let’s assume the standard dlog suffices 

for our series.

• Typically, for financial returns series – the data 

exhibits strong remaining first order persistence, 

requiring an AR(1) to be fitted. This will then be 

the 𝜇𝑡 mean process.

• Let’s now clean the residuals of the mean process 

for remaining serial autocorrelation…



Generalizing the ARCH process… GARCH

• Bollerslev (1986) generalized the approach proposed by Engle by allowing the conditional 

variance term (h𝑡) to display an ARMA (p,q) process.

• That implies, a GARCH (p,q) series would have the following form:

𝑦𝑡 = 𝛼 + 𝜇𝑡 + 𝜀𝑡

𝜀𝑡 = ℎ𝑡. 𝜂𝑡 ;

ℎ𝑡 = 𝛼0 +  𝒊=𝟏
𝒑
𝜷𝒊𝒉𝒕−𝒊

𝟐 +  𝑖=1
𝑞
𝛼𝑖𝜀𝑡−𝑖
2 ; 𝜂𝑡~𝑊𝑁~𝑁(0,1)

With constraints : 𝛼0 > 0, 𝛼𝑖 > 0, 𝛽𝑖 > 0,

0 <  𝑖=1
𝑝
𝛽𝑖 +  𝑖=1

𝑞
𝛼𝑖 < 1.

𝐴𝑙𝑠𝑜, 𝑡ℎ𝑒 𝐴𝑅𝑀𝐴 𝑎𝑛𝑑 𝐺𝐴𝑅𝐶𝐻 𝑜𝑟𝑑𝑒𝑟𝑠 𝑜𝑓𝑥𝑡 𝑎𝑛𝑑 h𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑛𝑒𝑒𝑑 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑡𝑒!

It follows directly that GARCH(0,1) is equivalent to an ARCH(1) specification



Generalizing the ARCH process… GARCH

• Bollerslev (1986) generalized the approach proposed by Engle by allowing the conditional 

variance term (h𝑡) to display an ARMA (p,q) process.

• That implies, a GARCH (p,q) series would have the following form:

𝑦𝑡 = 𝛼 + 𝜇𝑡 + 𝜀𝑡

𝜀𝑡 = ℎ𝑡. 𝜂𝑡 ;

ℎ𝑡 = 𝛼0 +  𝒊=𝟏
𝒑
𝜷𝒊𝒉𝒕−𝒊

𝟐 +  𝑖=1
𝑞
𝛼𝑖𝜀𝑡−𝑖
2 ; 𝜂𝑡~𝑊𝑁~𝑁(0,1)

With constraints : 𝛼0 > 0, 𝛼𝑖 > 0, 𝛽𝑖 > 0,

0 <  𝑖=1
𝑝
𝛽𝑖 +  𝑖=1

𝑞
𝛼𝑖 < 1.

𝐴𝑙𝑠𝑜, 𝑡ℎ𝑒 𝐴𝑅𝑀𝐴 𝑎𝑛𝑑 𝐺𝐴𝑅𝐶𝐻 𝑜𝑟𝑑𝑒𝑟𝑠 𝑜𝑓𝑥𝑡 𝑎𝑛𝑑 h𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑛𝑒𝑒𝑑 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑡𝑒!

It follows directly that GARCH(0,1) is equivalent to an ARCH(1) specification

Some ARIMA 

model, e.g.

(NB: No remaining 

AC or PAC)

Some Return series 

(Dlog.ret.resids).

(NB: No Unit Root)

(NB: No remaining 

AC or PAC)



Generalizing the ARCH process… 

GARCH

• Following similar reasoning as for deriving the ARCH model, the 

unconditional mean of 𝜀𝑡 follows as:

• 𝐸𝑡 𝜀𝑡 = 𝐸(h𝑡 . 𝜂𝑡) = 𝐸(h𝑡)E(𝜂𝑡) = 0 (𝑢𝑠𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒)

• Unconditional variance:

𝐸 𝜀𝑡
2 = 𝐸 h𝑡

2 . 1 = 𝐸 𝛼0 +  𝑖=1
𝑝
𝛽𝑖h𝑡−𝑖
2 +  𝑖=1
𝑞
𝛼𝑖𝜀𝑡−𝑖
2

= 𝛼0 + ( 𝑖=1
𝑝
𝛽𝑖 +  𝑖=1

𝑞
𝛼𝑖)𝜀𝑡−𝑖

2 ; {𝑎𝑠 𝐸 𝜀𝑡−1
2 = 𝐸 h𝑡−1

2 }

𝑎𝑠 ∶ 𝐸 𝜀𝑡
2 = 𝐸 𝜀𝑡−1

2 → 𝐸 𝜀𝑡
2 =

𝛼0

1 − ( 𝑖=1
𝑝
𝛽𝑖 + 𝑖=1

𝑞
𝛼𝑖)

With 0 < ( 𝑖=1
𝑝
𝛽𝑖 +  𝑖=1

𝑞
𝛼𝑖) < 1 ,

Which is a constant.



Generalizing the ARCH process… 

GARCH

• The Autocorrelation function:

𝐸 𝜀𝑡, 𝜀𝑡−𝑗 = 0 , ∀𝑗

• Conditional variance:

𝐸𝑡−1 𝜀𝑡
2 = 𝐸𝑡−1 h𝑡

2𝜂𝑡
2 = 𝐸𝑡−1 h𝑡

2 . 1 = 𝒉𝒕
𝟐

= 𝛼0 + 

𝑖=1

𝑝

𝛽𝑖h𝑡−𝑖
2 + 

𝑖=1

𝑞

𝛼𝑖𝜀𝑡−𝑖
2

• Which is a non-constant, conditional heteroskedastic process 
with an ARMA form. 



Interpreting the coefficients

• Suppose we have the GARCH(1,1) process :

ℎ𝑡
2 = 𝛼0 + 𝛼 𝜀𝑡−1

2 + 𝛽(ℎ𝑡−1
2 )

𝛼 → extent to which a shock today feeds into tomorrow’s volatility, or the response of 

ℎ𝑡 to new information on an unexpected shock 

We can rewrite the top part  as: (adding and subtracting 𝛼. ℎ𝑡−1
2 )

ℎ𝑡
2 = 𝛼0 + 𝛼. 𝜀𝑡−1

2 − ℎ𝑡−1
2 + 𝛼 + 𝛽 . (ℎ𝑡−1

2 )

So that from this form we can interpret the two coefficients as:

• 𝛼 → Impact of the unanticipated shock part (remember: 𝐸 𝜀𝑡
2 = 𝐸 𝜂𝑡

2 . 𝐸 ℎ𝑡
2 =

1. 𝐸 ℎ𝑡
2 , so that the difference 𝜀𝑡−1

2 − ℎ𝑡−1
2 is the unexpected volatility part…)

• (𝛼 + 𝛽) → Degree of Autoregressive decay, i.e. the rate at which the effect of a 

previous shock dies down on the variance process. 

• Typically we find that (𝛼 + 𝛽) → 1, implying financial time-series show a slow decay / 

strong persistence in the volatility process



Parsimony of GARCH

• Using the GARCH approach now let’s the modeller fit a more parsimonious conditional

variance equation if the ARCH fit requires a large order [i.e. a large p for ARCH(p)].

• Also note that fitting a GARCH(p,q) process effectively implies fitting an ARMA process

on the conditional variance (h𝑡
2) of the series 𝑦𝑡.

• This implies that the correlogram of the series 𝑦𝑡 should display stationarity… While the

squared residual correlogram (again, representing the volatility conditional on past

shocks) would display an ARMA structure!

• The same then applies to fitting the GARCH orders as before  by viewing the

correlograms!

• Borreslev (1986) proved the ACF of the squared residuals, resulting from a

GARCH(p,q) process, acts like that of an ARMA(m,p) process: with𝒎 → max(𝑝, 𝑞)



Determining the order of GARCH

• To check whether conditional heteroskedasticity is present in our series, it seems to 

follow simply that we fit an ARMA model to series [𝑦𝑡] to make it stationary, after 

which we square the residuals, and then take the correlogram of [𝜀𝑡
2]. It seems then 

plausible to follow the Borreslev 𝐴𝑅𝑀𝐴(𝑚, 𝑝) specification, determining the order 

graphically…

• This is not entirely correct though (although for simplicity is mostly used as a guideline), 

as the initial model on [𝑦𝑡] was fitted assuming constant conditional variance. Thus 

using the residuals of such a model seems at odds with finding the correct order of the 

conditionally heteroskedastic variance! 

• What we therefore do is, fit subsequent heteroskedasticity models and the 

ARMA models simultaneously, using Max Likelihood techniques, and then 

testing which model fits the data closest using some identification criteria like 

AIC / SBIC…



Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.315 0.315 51.940 0.000

2 0.227 0.142 79.028 0.000

3 0.286 0.204 122.01 0.000

4 0.366 0.252 192.70 0.000

5 0.286 0.108 235.85 0.000

6 0.144 -0.05... 246.76 0.000

7 0.329 0.204 304.21 0.000

8 0.320 0.106 358.54 0.000

9 0.167 -0.06... 373.47 0.000

1... 0.081 -0.10... 376.94 0.000

1... 0.080 -0.13... 380.36 0.000

1... 0.234 0.087 409.57 0.000

1... 0.130 0.026 418.69 0.000

1... 0.118 0.049 426.15 0.000

1... 0.122 -0.00... 434.10 0.000

1... 0.124 -0.01... 442.33 0.000

1... 0.121 0.045 450.28 0.000

Correlogram of sqrd ordinary residuals of J203’s 

ARIMA(1,1,1) model:

• The correlogram 

clearly shows the 

conditional 

heteroskedasticity of 

the squared ordinary 

resids…

• It also shows a slow 

decay of the shocks, 

thus the series 

probably has a 

𝛼 + 𝛽 → 1

𝜀2



Fitting a GARCH(1,1)

• Although Bollerslev suggests we should be using the 

correlogram to guide our ordering selection, the model 

most typically used in financial time-series analysis is the 

GARCH(1,1) model (see Hansen and Lunde (2004) who 

survey many types of GARCH models and make this 

conclusion for financial time-series on aggregate – but they 

do suggest adding leverage effects too, which we will do in 

the next session…)



How does the CPU estimate GARCH?

• Think about this – the CPU needs to first estimate a mean equation, then 

get the residuals, and then fit an autoregressive series on these residuals 

to find the parameter values for the GARCH process…

• As such, OLS won’t cut it… But Engle proved that efficient estimates 

could be obtained by using a Maximum Likelihood approach to estimate 

the mean and the variance equations simultaneously!

• Assuming normality of the residuals, this implies setting up a Likelihood 

system as:



Estimation of a GARCH system

• Suppose 𝑌𝑡 follows an AR(1)-GARCH(1,1) system:

𝑦𝑡= 𝑐 + 𝜙𝑦𝑡−1 + 𝜀𝑡 , 𝑤𝑖𝑡ℎ 𝜀𝑡~𝑁(0, ℎ𝑡)

ℎ𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛼2ℎ𝑡−1
2

• After specifying the 𝑐 and 𝜙 parameters using OLS… We then 

specify the LogLikelihood function L to be maximized, assuming 

residuals are Normally distributed, to obtain the 𝛼′𝑠 above:

𝐿 = −
𝑁

2
log 2𝜋 −

1

2
 

𝑡=1

𝑁

log(ℎ𝑡
2) − 1/2

1

2
 

𝑡=1

𝑁

[( 𝜀𝑡−1
2 )/ℎ𝑡

2]

• The parameter values that maximize L will be obtained by MLE 

approach, then be used in the GARCH system…



Determining the order of GARCH

After fitting subsequent ARCH / GARCH models, we test its validity by checking:

• The coefficients (both for statistical significance and whether they adhere to their 

constraints – collectively and individually), 

• And also NB : graphing the squared standardized residuals, [𝜂
𝑡
2], and checking whether 

all conditional heteroskedasticity has been removed (as 𝜂 𝑡 is the true stochastic process 

of the system, it should represent a WN series)

• This requires testing for WN on the Standardized residuals.

• The parameters should also adhere to its restrictions (here 𝛼 + 𝛽 < 1 and each is > 0)

• Note from this output, 𝛼 + 𝛽 = 0.95, showing strong autoregressive persistence in the 

volatility process – underlining the strong market momentum experience on the JSE 

over the last ten years



𝜂𝑡
2 graphed…

• From this graph 

we can clearly see 

that 𝜂𝑡
2 is a closer 

approximation to 

WN than the 

ordinary residual 

series that we had 

earlier (when we 

did not control for 

conditional 

heteroskedasticity.

• Graphing its 

correlogram also 

suggests it is WN.
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ETA

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.02... -0.02... 0.2692 0.604

2 -0.02... -0.02... 0.6667 0.717

3 0.006 0.005 0.6863 0.876

4 -0.01... -0.01... 0.7759 0.942

5 -0.04... -0.04... 2.0253 0.846

6 -0.00... -0.00... 2.0395 0.916

7 0.052 0.049 3.4784 0.838

8 -0.00... -0.00... 3.4924 0.900

9 0.031 0.032 3.9932 0.912



Goodness of fit measures for GARCH

• Comparing different ARCH/GARCH fittings to the model in an effort to control for 

conditional heteroskedasticity, we can use the standard AIC and SBC measures 

{which we want ideally as small as possible (−∞)}

• However, as the sum of squared residuals (SSR) =  𝜀𝑡
2 ∶ ordinary goodness of 

fit measures may not apply!

• As the conditional heteroskedasticity has now been controlled for, we should 

rather use : 𝑆𝑆𝑅′ =  𝜂𝑡
2 , the sum of squares of the standardized resids (which 

we’d like to minimize).

• Another measure that we can use is Maximum Likelihood (L).

• It follows that models with large L-values, tend to have low 𝑺𝑺𝑹′ values.





After fitting ARCH / GARCH, how is my 

model affected?!

• Since the mean of each ordinary residual is zero {𝐸𝑡(𝜀𝑡) = 0}, the 

optimal 𝑗 − 𝑠𝑡𝑒𝑝 𝑎ℎ𝑒𝑎𝑑 forecast of [𝑦𝑡] is not affected by the 

presence of the ARCH/GARCH error specifications (These 

forecasts we make simply by using our model 𝜇𝑡) 

• The size of the confidence interval surrounding the forecast is, 

however, affected (and at times strongly affected) by the 

conditional volatility, allowing us to account for periods of 

greater uncertainty in our forecasts.

• Also the t-tests for the coefficients will be more accurate, as the 

conditional heteroskedasticity, if left unaccounted for, biases the 

significance tests toward rejection of the Null (significance)…

• Graphically, this means…



Forecasting Conditional Variance

• Fitting a GARCH model on the conditional variance of a time series also

allows us to forecast conditional volatility very simply (and thus forecast

market momentum).

• This is especially useful for traders in financial markets who are

interested in forecasting the rate of return to holding an asset for a

short period of time.

• In particular, if an investor holds an asset from time 𝑡 → 𝑡 + 1, the long

run mean (𝜇𝑡) would be used together with the conditional variance

𝐸𝑡(𝜀𝑡+1
2), as the unconditional (long run) variance would be of limited

use in this case!!

• Let’s see how we can forecast conditional volatility one period ahead

[𝐸𝑡(𝜀𝑡+1
2)] when we are at time t.



Forecasting Conditional Variance

• The one-step-ahead forecast follows simply from 

the definition of GARCH :

𝐸𝑡 𝜀𝑡+1
2 = 𝐸𝑡 h𝑡+1

2𝜂𝑡+1
2 = 𝐸𝑡 h𝑡+1

2 . 1

=  𝒉𝒕+𝟏
𝟐 = 𝛼0 + 

𝑖=1

𝑝

𝛽𝑖h𝑡+1−𝑖
2 + 

𝑖=1

𝑞

𝛼𝑖𝜀𝑡+1−𝑖
2

Which, for a GARCH(1,1) process, is:

 𝐸𝑡 𝜀𝑡+1
2 =  𝒉𝒕+𝟏

𝟐 = 𝛼0 + 𝛽. h𝑡
2 + 𝛼. 𝜀𝑡

2

Which is easy to calculate at time (t), for we have h𝑡
2

& 𝜀𝑡
2



Forecasting Conditional Variance

• The 2-step-ahead forecast follows by using simple iterations :

𝐸𝑡 𝜀𝑡+2
2 = 𝐸𝑡 h𝑡+2

2𝜂𝑡+2
2 = 𝐸𝑡 h𝑡+2

2 . 1

=  𝒉𝒕+𝟐
𝟐 = 𝛼0 + 

𝑖=1

𝑝

𝛽𝑖h𝑡+2−𝑖
2 + 

𝑖=1

𝑞

𝛼𝑖𝜀𝑡+2−𝑖
2

Because : 𝐸𝑡 𝜀𝑡+𝑘
2 = 𝐸𝑡 h𝑡+𝑘

2 . 1 (𝑑𝑢𝑒 𝑡𝑜 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 h𝑡 & 𝜂𝑡)

 𝒉𝒕+𝟐
𝟐 = 𝛼0 +  

𝑖=1

𝑝

𝛽𝑖 + 

𝑖=1

𝑞

𝛼𝑖 h𝑡+2−𝑖
2.

If we let  𝑖=1
𝑝
𝛽𝑖 +  𝑖=1

𝑞
𝛼𝑖 =  𝐶𝑖 , it follows simply that : 

 𝒉𝒕+𝟐
𝟐 = 𝛼0 +  

𝑖=1

max(𝑝,𝑞)

𝐶𝑖h𝑡+2−𝑖
2



Forecasting Conditional Variance

Thus using iteration:   𝒉𝒕+𝒋
𝟐 = 𝛼0 +  𝑖=1

max(𝑝,𝑞)
𝐶𝑖h𝑡+𝑗−𝑖

2

= 𝛼0[1 + 𝐶1 + (𝐶𝑖)
2 +⋯+ 𝐶𝑗)

𝑗−1 + 𝐶𝑗
𝑗h𝑡+𝑗−𝑖

2

Rewritten, the 𝒋 − period ahead forecast of the volatility process using a GARCH(1,1) 

process and recursive substitution & the law of iterated expectations, is:

𝐸𝑡 ℎ𝑡+𝑗 = 𝛼 + 𝛽
𝑗 . ℎ𝑡
2 −
𝛼0
1 − 𝛼 − 𝛽

+
𝛼0
1 − 𝛼 − 𝛽

Which, if 𝑗 → ∞, 𝐸𝑡 ℎ𝑡+𝑗 →
𝛼0

1−𝛼−𝛽
, which means the iterated forecast collapses to 

the unconditional (LR) variance, which is a very desirable attribute of the GARCH 

models… (which others, such as the EWMA, does not exhibit)



Forecasting Conditional Variance

Note: 

• we can continue this recursive forecasting process indefinitely, 

but it should be obvious that the further we forecast the less 

accurate it becomes:

Interpreting the Forecast:

• If say :  𝒉𝒕+𝟐
𝟐 is very large, it would mean the unconditional 

forecast of [𝑦𝑡] for period (𝑡 + 2),  found using the ARMA-

model [μt], has a large probability of being inaccurate,: this is 

because we expect the  volatility in error terms seen recently 

to continue [i.e. we expect the market momentum to persist 

into the next period…]



Frequency and DGP…

• Higher frequency data (say daily) tend to be more volatile and has more 

noise that might not correspond to LR fundamental behaviour.

• This needs to be taken into consideration when looking for GARCH 

effects.

• Also, it can happen that GARCH effects are picked up as a result of breaks 

in the unconditional variance and not necessarily as a result of conditional 

heteroskedasticity (taking several periods and testing for GARCH on each, 

as opposed to the entire sample, might solve this problem)... 

• Thus a good robustness check is required in establishing GARCH effects 

for a sample.

• This might be especially prevalent in monthly / annual data



Pro’s and cons of fitting ARCH / GARCH

Strengths of using ARCH / GARCH:

• ARCH provides us with a means of controlling for conditional heteroskedasticity, which is particularly 

useful when studying financial data / data that exhibit periods of momentum / volatility clustering.

• It allows us to forecast volatility into a future period, allowing the modeler to adjust the confidence 

interval band and be mindful of potential future volatility clustering.

Weaknesses of using ARCH / GARCH

• Positive and negative shocks have the same effect on forecasting volatility : Not necessarily the case in 

practice :  negative & positive momentum in stock markets, e.g.,  behave differently!

• There are strict parameter constraints that must suffice

• It does not provide us with any insight into the source of the conditional variance (merely a forecast 

based on historic data)

• ARCH models, more often than not, tend to over-predict volatility, as they respond slower to large and 

isolated shocks. They also only predict shock persistence, not the initial shock.



Summary

• 1. Modeling the mean effect (ARIMAX specs, or whichever) and testing for ARCH effects

• Ho: no ARCH eects versus Ha : ARCH eects

• Use Q-statistics of squared residuals

• 2. Order determination

• Use PACF of the squared residuals. (In practice, simply try some reasonable order).

• 3. Estimation: Conditional MLE

• 4. Model checking: 

• Q-stat of standardized residuals and squared standardized residuals. Skewness & Kurtosis of standardized 

residuals.

• R provides many plots for model checking and for presenting the results, mas we will 

see in the tuts.



Many Packages in R

• We will use RUGARCH and RMGARCH  packages  in R. But 

there are many others. The following code will, e.g., fit a 

GARCH(11) model:

> library(fGarch)

> # Create log returns for your series. Test for remaining UR, and thereafter control for 

remaining serial persistence by fitting, e.g., an ARIMA model. After doing so, get the 

residuals (log.ret.resids) and do the following:

> acf(log.ret.resids)  # Should show WN

> acf(log.ret.resids^2) # Should show persistence in 2nd moment…

> pacf(log.ret.resids^2) # Same here. Note these two stats motivate fitting garch model… 

> Box.test(log.ret.resids ^ 2, lag = 10,type = 'Ljung') # More formal test…

> m1=garchFit(~garch(1,1), data = log.ret.resids, trace = F)

> summary(m1)



Plotting in fgarch in R

• > plot(m1)

• Make a plot selection (or 0 to exit):

• 1: Time Series

• 2: Conditional SD

• 3: Series with 2 Conditional SD Superimposed

• 4: ACF of Observations

• 5: ACF of Squared Observations

• 6: Cross Correlation

• 7: Residuals

• 8: Conditional SDs

• 9: Standardized Residuals

• 10: ACF of Standardized Residuals

• 11: ACF of Squared Standardized Residuals

• 12: Cross Correlation between r^2 and r

• 13: QQ-Plot of Standardized Residuals

• We  will see many other plotting capabilities in RUGARCH 

as well..



Standard RUGARCH plots in R
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GARCH model Variants



Strong persistence in conditional volatility

• Most volatility models show strong persistence (i.e. 𝛼 + 𝛽 → 1).

• As a result, the integrated GARCH (IGARCH) model has been 

proposed when the strength of persistence resembles a unit root 

process in the conditional variance equation (hence the 

“integrate” part).

• From last week, remember that the conditional forecast of 

volatility (j - periods ahead) is:

𝐸𝑡 ℎ𝑡+𝑗 = 𝛼 + 𝛽
𝑗 . ℎ𝑡
2 −
𝛼0
1 − 𝛼 − 𝛽

+
𝛼0
1 − 𝛼 − 𝛽



IGARCH

• If now we have (𝛼 + 𝛽 → 1), the conditional estimate would be 

(we omit the proof):

𝐸𝑡 ℎ𝑡+𝑗 = ℎ𝑡
2 + 𝑗. 𝛼0

Which very closely resembles a random walk process with a drift…

As such, the unconditional variance does not converge and therefore 

the process does not have a stationary covariance series. Nelson did 

show, however, that a such a process can still be strictly stationary 

otherwise…



IGARCH

• The IGARCH model then restricts that parameters of the GARCH 

model to sum to one, and it drops the coefficient:

ℎ𝑡
2 = 

𝑖=1

𝑝

𝛽𝑖h𝑡+1−𝑖
2 + 

𝑖=1

𝑞

𝛼𝑖𝜀𝑡+1−𝑖
2

With :  𝑖=1
𝑝
𝛽𝑖 +  𝑖=1

𝑞
𝛼𝑖 = 1

• Notice that this constraint implies the GARCH process acts like 
an autoregressive series with a unit root (but it isn’t, as it is a 
deterministic solution with no residuals…)

• The IGARCH process then accounts for this unit root explicitly

Despite many series showing very strong volatility persistence, in 

practice the IGARCH form is regarded as a highly unlikely volatility 

process design and as such is not often used…



RiskMetrics

• J.P. Morgan released a technical not in October 1994 describing

its own internal market risk management methodology, termed

RiskMetrics𝑇𝑀.

• The simplicity of the approach is regarded as its strength, with

its obvious appeal to non-technical practitioners.

• The approach is very simply an IGARCH(1,1) model, with the

parameters fixed:

𝜎𝑡
2 = 𝛼 + 1 − 𝜆 𝜀𝑡−1

2 + 𝜆𝜎𝑡−1
2

Typically, 𝛼 = 0 𝑎𝑛𝑑 𝜆 = 0.94 for daily and 0.97 for weekly data.

This is the basic model. JP Morgan (and other institutions) often

use variants thereof.



Dealing with asymmetries…

• Up to now, the conditional variance equation has only considered

the magnitudes of past residuals and ignored the signs.

• But as Black showed that leverage effects matter for mean

equations (where negative returns show greater persistence),

Glosten, Jagannathan and Rungle (1989) showed that volatility

models show similar asymmetry.

• As such they proposed the GJR-GARCH model (which is a

special case of the TARCH model), which explicitly controls for

sign in past residuals by introducing an indicator variable into the

variance equation.



GJR-GARCH

h𝑡
2 = 𝛼0 + 𝛼1(𝜀𝑡−1

2) + 𝜑. I𝑡−1 𝜀𝑡−1
2 + βh𝑡−1

2

Where :   I
= 1 𝑖𝑓 𝜀𝑡−1 < 0
= 0 𝑖𝑓 𝜀𝑡−1 ≥ 0

This implies that for a negative shock in 𝑡 − 1, (𝜀𝑡−1), the impact on 
the conditional variance in 𝑡 is:

h𝑡
2 = (𝛼1 + 𝜑. I𝑡−1)(𝜀𝑡−1

2) + βh𝑡−1
2

which is larger if 𝜙 → is positive.

When regressing the model, a significant 𝑡 −statistic for 𝜑 implies 

the data contains a leverage effect. Typically we find that 𝜙 would 

be positive, indicating increased volatility persistence if the past 

shock was negative…



TARCH model

• The more general form of the GJR model is the TARCH 

model.

• It basically suggests that there exists a threshold effect, 

where if residuals are larger than 𝑇, the conditional variance 

persistence increases.

• The GJR-GARCH is therefore a TARCH with a threshold 

zero (𝑇 = 0)



EGARCH model

• Another model that controls for asymmetry and does not need to 

impose non-negativity constraints in the variance equations, is 

Nelson’s (1991) EGARCH model:

ln ℎ𝑡
2 = 𝛽0 + 𝛽1ln ℎ𝑡−1

2 + 𝛾1.
𝜀𝑡−1
ℎ𝑡
+ 𝛾2{
𝜀𝑡−1
ℎ𝑡
−
2

𝜋
}

With 𝐸
𝜀𝑡−1

ℎ𝑡
=
2

𝜋
if normal distribution is assumed.

So that EGARCH always produces a positive conditional variance 

requiring no restrictions on parameters (except that |𝛽1| < 1).

Now, as 
𝜀𝑡−1

ℎ𝑡
and  
𝜀𝑡−1

ℎ𝑡
are included, ℎ𝑡

2 will be asymmetrically 

distributed across positive / negative residuals (so that if 𝛾 < 0,we see 

leverage effects…)



News Impact Curve (NIC)

• To get a visual indication of the asymmetric impact of the 

volatility process to negative and positive shocks, we can 

draw a NIC. The curve is drawn for the estimated 

coefficient values of a series below. 

• This NIC is for the JSE ALSI (J203) using a EGARCH(1,1) 

approach:

.0001

.0002

.0003

.0004

.0005

.0006

.0007

.0008

-10 -8 -6 -4 -2 0 2 4 6 8 10

C1

C
2

GARCH

EGARCH

𝜀𝑡−1

ℎ𝑡
2

EGARCH thus 

accounts for both   

Leverage and Level 

impact of shocks to 

volatility persistence



APARCH

• Ding, Granger and Engle (1993), propose a Box-Cox transformation 

on the std residual series – motivated by Taylor’s finding that absolute 

returns are positively autocorrelated at long lags – indicating longer 

memory in the series. See below the ACF of abs(DLZAFN):



APARCH
• APARCH models thus look as follows:

𝜎𝑡
𝛿 = 𝜔 + 

𝑖=1

𝑞

𝛼𝑖 𝜀𝑡−𝑖 − 𝛾𝑖𝜀𝑡−𝑖
𝛿 + 

𝑗=1

𝑝

𝛽𝑗𝜎𝑡−𝑗
𝛿

With 𝛿 > 0 and  𝛾 ∈ −1 ; 1 .

The closer 𝛿 → 1, the longer the memory process…



APARCH

• The APARCH model nests several other GARCH variants, including:

• ARCH (𝛿 = 2, 𝛾𝑖= 0 & 𝛽𝑗 = 0)

• GARCH (𝛿 = 2, 𝛾𝑖= 0 )

• GJR-GARCH (𝛿 = 2)

• Log-ARCH (𝛿 → 0)

• From the output on the previous page (ZA-FN returns), we see:

• 𝛿 = 1.22, it is not significantly different from 1, but indeed significantly different from 2

(considering S.E. = 0.24).

• This implies – i.s.o. modelling the conditional variance (GARCH), it is more relevant to 

model the conditional S.D. (as shown by viewing the Absolute Return ACF).

• This implies greater correlation between Absolute as opposed to squared residuals, i.e. 

indicates the presence of long-memory…

• The significant and positive 𝛾 also shows the presence of Leverage!



FIGARCH

• As discussed for the mean equation earlier, we can model the second

order persistence as a fractional integration process.

• This entails that shocks to the second order moment process decay

at an exponential rate.

• FIGARCH modelling thus, similar to ARFIMA, replaces the FD

operator 1 − 𝐿 by: 1 − 𝐿 𝑑.

• Thus, FIGARCH(p,d,q) model is given by:

𝜎𝑡
2 = 𝜔 1 − 𝐵 𝐿 −1 + 1 − 1 − 𝐵 𝐿 −1𝜙 𝐿 1 − 𝐿 𝑑 𝜀𝑡

2 + 𝐵 𝐿 𝜎𝑡
2

𝜔∗ Stationary: 0 < 𝛿 < 1 &:

Covariance stationary if 𝛿 < 0.5



FIGARCH

• Benefit of the FIGARCH lies in the fact that, in contrast to 

GARCH (𝑑 = 0) and IGARCH (𝑑 = 1) type models: the shocks 

to the conditional second order moments do not die out 

exponentially, but rather past shocks decay at a slow, 

hyperbolic rate – implying long memory and thus fatter tails.

• Thus not controlling for long memory – underestimates impact of shocks

• We can also combine FIGARCH and APARCH: FIAPARCH, to 

control for:

• Asymmetry

• Fat tails

• Long memory



As is clear from the figure (BBM, 1996), using monte-carlo estimates – we see

GARCH shocks dying out quickly, IGARCH shocks impacting infinite periods,

FIGARCH shocks dying out more slowly (closer to what is seen from ACFs
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GARCH-M



Adding GARCH into the mean equation

• (See: Engle, R.F., D. Lilien and R. Robins (1987), “Estimating Time  Varying 

Risk Premia in the Term Structure: the ARCH-M Model,” Econometrica.)

• From standard MPT theories, investors are risk averse, and as 

such require larger compensation for holding assets with higher 

associated risk (or variance of return)

• Initially introduced by the above authors, the GARCH-M model 

adds to our understanding of the volatility process by including it 

into the mean equation.

• Thus it approximates how investors price volatility.



GARCH-M model

• The standard GARCH-M specification is:

𝑦𝑡 = 𝜇 + 𝛿ℎ𝑡−1 + 𝜀𝑡

ℎ𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡

2 + 𝛽ℎ𝑡−1
2

• So that if 𝛿 > 0 and statistically significant, then we can deduce that increased risk (as 

proxied for by the ℎ𝑡 process) is “priced into” the mean equation.

• Thus the parameter can be interpreted as the additional return required 

by investors for each additional unit of risk (measured by one S.D. above).

Thus 𝛿 = risk premium for an investor to hold 𝑦.

• Engle, et al initially used the ARCH-m model to study 𝑦𝑡 as the difference in 

return of a 6-month T-bill vs two 3-month T-bills (rolled over for the 6month 

period). The excess return to holding the longer term bond was given as 𝑦𝑡 .

• Note too that EVIEWS allows the modeller to include the ARCH-m factor as 

variance (ℎ𝑡
2), S.D. (ℎ𝑡), or as log ℎ𝑡

2 - depending on preference.



Other models…

• There are a host of GARCH models available that 

fit the specific characteristics of nearly any type of 

financial time-series .

• These include NARCH, CGARCH, OGARCH, 

QGARCH, VARCH, etc. – which will not be 

discussed in this course.



Including regressors into the volatility 

equations…

• Of course, similar to adding variables into the mean equation, 

we can add variables into the variance equations.

• This would enable us to test whether a certain variable 

significantly impacts the volatility process underlying a series.

𝑦𝑡 = 𝜇 + 𝜀𝑡

ℎ𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡

2 + 𝛽ℎ𝑡−1
2 + 𝜸. 𝒙𝒕

We can then interpret the significance and sign of 𝛾, which could 

add to the understanding of the volatility process.



Break in volatility

• Likewise, we can add indicator variables that proxy for 

periods of increased levels of volatility. Thus we can test 

whether there has been a structural break in the volatility 

process after the global financial crisis: G𝐹𝐶, by testing the 

hypothesis that: 𝐻0: 𝛾 ≠ 0 in:

𝑦𝑡 = 𝜇 + 𝜀𝑡

ℎ𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡

2 + 𝛽ℎ𝑡−1
2 + 𝛾. 𝐺𝐹𝐶

𝐺𝐹𝐶 =
1 ∀ 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝐺𝐹𝐶
0 ∀ 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐺𝐹𝐶



Interesting application

• Day and Lewis (1992) studied the out-of-sample forecasting ability of 

GARCH / EGARCH models at forecasting volatility of stock indices.

• They compare their autoregressive estimates to the implied volatilities

as given by the aggregate level of volatility implied by options prices.

• Note that options prices has, as input, the strike price, duration, etc. 

– and volatility, which needs to be estimated by the option writer.

• Thus we can compare this implied volatility (as implied by the options 

prices which we use to extract the implied volatility) to that which is 

estimated from the EGARCH model.

• They then test whether in their GARCH model (and EGARCH), 𝛿 ≠

0 for: ℎ𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡

2 + 𝛽ℎ𝑡−1
2 + 𝛿(𝐼𝑚𝑝𝑙𝑖𝑒𝑑 𝑉𝑜𝑙)



Interesting Application

• Christiansen also used univariate volatility models to study 

volatility spill-over effects (Christiansen (2007): Volatility Spill-

over effects in European Bond Markets). 

• The approach is simple and intuitive and can basically be described 

as follows:

• The paper studies shocks to European bond markets in 3 different 

effect classifications: 

1. Local market (own country)

2. Regional Market (Europe aggregate)

3. Global Market (as proxied for by the US bond market).

She then aims to study whether shocks are transmitted from:

𝑈𝑆 → 𝐸𝑈 → 𝐸𝑈 𝑚𝑒𝑚𝑏𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑟𝑦



Study is in two-steps

• Step 1: Fit a univariate AR(1)-GARCH(1,1) model for the US Bond Returns:

𝑅𝑈𝑆,𝑡 = 𝑐0 + 𝑐1𝑅𝑈𝑆,𝑡−1 + 𝜀𝑈𝑆,𝑡

ℎ𝑈𝑆,𝑡
2 = 𝜔𝑈𝑆 + 𝛼𝑈𝑆𝜀𝑈𝑆,𝑡 + 𝛽𝑈𝑆ℎ𝑈𝑆,𝑡−1

2

• Step 2: Fit a univariate AR(1)-GARCH(1,1) model for the EU.

𝑅𝐸𝑈,𝑡 = 𝑐0 + 𝑐1 𝑅𝐸𝑈,𝑡−1 + 𝑐2,𝑡−1𝑅𝑈𝑆,𝑡−1 + 𝑐3,𝑡−1𝜀𝑈𝑆,𝑡 + 𝜀𝐸𝑈,𝑡

ℎ𝐸𝑈,𝑡
2 = 𝜔𝐸𝑈 + 𝛼𝐸𝑈𝜀𝐸𝑈,𝑡 + 𝛽𝐸𝑈ℎ𝐸𝑈,𝑡−1

2

• Step 2: Fit a univariate AR(1)-GARCH(1,1) model for the Germany:

𝑅𝐺𝐸,𝑡 = 𝑐0 + 𝑐1𝑅𝐺𝐸,𝑡−1 + 𝑐2,𝑡−1𝑅𝑈𝑆,𝑡−1 + 𝑐3,𝑡−1𝑅𝐸𝑈,𝑡−1 + 𝑐4,𝑡−1𝜀𝑈𝑆,𝑡 + 𝑐5,𝑡−1𝜀𝐸𝑈,𝑡 + 𝜀𝐺𝐸,𝑡

ℎ𝐺𝐸,𝑡
2 = 𝜔𝐺𝐸 + 𝛼𝐺𝐸𝜀𝐺𝐸,𝑡 + 𝛽𝐺𝐸ℎ𝐺𝐸,𝑡−1

2



Study is in two-steps

• Step 1: Fit a univariate AR(1)-GARCH(1,1) model for the US Bond Returns:

𝑅𝑈𝑆,𝑡 = 𝑐0 + 𝑐1𝑅𝑈𝑆,𝑡−1 + 𝜀𝑈𝑆,𝑡

ℎ𝑈𝑆,𝑡
2 = 𝜔𝑈𝑆 + 𝛼𝑈𝑆𝜀𝑈𝑆,𝑡 + 𝛽𝑈𝑆ℎ𝑈𝑆,𝑡−1

2

• Step 2: Fit a univariate AR(1)-GARCH(1,1) model for the EU.

𝑅𝐸𝑈,𝑡 = 𝑐0 + 𝑐1 𝑅𝐸𝑈,𝑡−1 + 𝑐2,𝑡−1𝑅𝑈𝑆,𝑡−1 + 𝑐3,𝑡−1𝜀𝑈𝑆,𝑡 + 𝜀𝐸𝑈,𝑡

ℎ𝐸𝑈,𝑡
2 = 𝜔𝐸𝑈 + 𝛼𝐸𝑈𝜀𝐸𝑈,𝑡 + 𝛽𝐸𝑈ℎ𝐸𝑈,𝑡−1

2

• Step 2: Fit a univariate AR(1)-GARCH(1,1) model for the Germany:

𝑅𝐺𝐸,𝑡 = 𝑐0 + 𝑐1𝑅𝐺𝐸,𝑡−1 + 𝑐2,𝑡−1𝑅𝑈𝑆,𝑡−1 + 𝑐3,𝑡−1𝑅𝐸𝑈,𝑡−1 + 𝑐4,𝑡−1𝜀𝑈𝑆,𝑡 + 𝑐5,𝑡−1𝜀𝐸𝑈,𝑡 + 𝜀𝐺𝐸,𝑡

ℎ𝐺𝐸,𝑡
2 = 𝜔𝐺𝐸 + 𝛼𝐺𝐸𝜀𝐺𝐸,𝑡 + 𝛽𝐺𝐸ℎ𝐺𝐸,𝑡−1

2



Volatility Spill-over

• From the previous slide then, the idiosyncratic shocks 

(𝜀𝑈𝑆,𝑡 , 𝜀𝐸𝑈,𝑡 , 𝜀𝐺𝐸,𝑡) are assumed independent, but this does 

not apply to the returns:

𝜖𝑈𝑆,𝑡 = 𝜀𝑈𝑆,𝑡

𝜖𝐸𝑈,𝑡 = 𝑐3,𝑡−1𝜀𝑈𝑆,𝑡 + 𝜀𝐸𝑈,𝑡

𝜖𝐸𝑈,𝑡 = 𝑐4,𝑡−1𝜀𝑈𝑆,𝑡 + 𝑐5,𝑡−1𝜀𝐸𝑈,𝑡 + 𝜀𝐺𝐸,𝑡

So that she is able to test for the significance of 𝑐3,𝑡−1, 𝑐4,𝑡−1

and 𝑐5,𝑡−1 above and so establish whether there is significant 

volatility spill-over effects from 𝑈𝑆 → 𝐸𝑈 → 𝐺𝑒𝑟𝑚𝑎𝑛𝑦



Reading…

• Go read this interesting article on the importance 

of including GARCH estimates in autoregressive 

models (and the problems with falsely rejected 

𝐻0
′𝑠 if you don’t): 

• Hamilton, J.D. (2008), “Macroeconomics 

and ARCH, Working paper, UCSD


