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What we will be discussing today

• We are looking today at using Principal Component Analysis techniques

to reduce the dimensionality of data, as well as Exploratory Factor

Analysis.

• Useful to econometricians, it provides a way of understanding how

correlated the variables in a system are.

• Factor models, related to PCA but slightly different in application, offer

parsimonious explanations of the underlying processes driving the data.

• (PCA and FA should not be confused – they are similar in that both

reduce dimensionality and are factor analytic techniques, but differ in the

mechanics and application and use different linear estimations).



Intuitively

• Intuitively, we can think of PCA as a parsimonious means of 

analysing  groups of correlated variables by finding optimal 

ways of combining such variables into smaller subsets that 

explain the variation.

• Factor analysis is, in turn, used to identify the structure 

underlying such variables – and seek to measure these latent 

variables (factors) themselves.

• Factors typically are related to real world features (such as 

productivity estimates, reading ability, etc), while for PCA 

the components are simply geometric abstracts that may / 

may not easily map into real world factors.



Graphically

• PCA: Extracts all components 

underlying a variable set.

• Amount of Components = 

amount of variables in the system.

• Thus the sum of all components’ 

contribution to variance is 100%

• Factor Analysis: Analyses only 

the shared variance.

• This common variance is then 

distributed in orthogonal

factors

• These factors are considered as 

causing variable variation.
Common

Unique



PCA

• The goal of Principal Component Analysis is to reduce 

the dimensionality of the sources of variation in a 

dataset.

• Effectively it reorganizes the 𝑘-variables in the dataset 

into 𝑘 −components, each being:

• Independent

• Orthogonalizes the variance contribution

• Thus decreasing in the variance contribution as a result

• It therefore provides a mathematical basis for 

constructing a new set of orthogonal components that 

explain, in decreasing order, the source of variation.



PCA

• Components identified in PCA analysis are linear 

combinations of variables in the data set.

• Variable combinations are based on calculated weights 

(eigenvectors)

• One problem with analysing data using PCA is that there 

is no clear statistical criterion for identifying significance.

• Rules of thumb are used for assessing what amount of 

components to consider (e.g. scree plots and using 

Kaizer’s rule).



PCA

• Using PCA is useful for application to financial data as we

get an idea of the commonality of variance between the

included series of interest.

• PCA also does not require knowledge of the source of

variation – and requires no ex ante specifications made on

the data.

• Results are, however, at times interpreted as providing

some deeper insight into the source of commonality (e.g.

broadly defining sources as market, sector or global in

nature) – which might be exaggerated.

• In this sense, it lets the data speak for itself.



Motivation

• Consider a dataset with 5 sector returns series, 𝑟𝑖 .

• Mathematically, we now want to transform the covariance 

matrix of all the series, ∑ , in such a way so as to identify 

components that are orthogonal and independent.

• Thus we want to maximize the diagonal elements (variance), 

and set to zero the off-diagonal elements (covariances) -

much like a Cholesky decomposition approach.

• This is done by using Eigenvalue decompositioning.



Motivation

• Suppose we transform the data so that:

𝑋 = 𝑅. 𝑃

Where 𝑃 is an orthonormal set (i.e. has orthogonal vectors) and 𝑋 then the 

transformed data.

The Covariance set of the transformed data series, 𝑋, can then be written 

as:

∑𝑋 =
1

𝑛
. 𝑋′𝑋 =

1

𝑛
𝑅. 𝑃 ′ 𝑅. 𝑃 → 𝑐𝑜𝑣(𝑋)

Now knowing that any covariance matrix is by definition symmetric, and 

knowing that any symmetric matrix can be represented as the product of a 

matrix of eigenvectors and a matrix of eigenvalues on the diagonal (𝐷)…



Motivation

• We thus have:

∑𝑋 = 𝑃′𝑃𝐷𝑃−1𝑃 = 𝑃′𝑃 𝐷 𝑃−1𝑃 = 𝐷

Using the fact that 𝑃−1 = 𝑃′ for the orthogonal matrix of 

eigenvectors and 𝐷 is the diagonal matrix of eigenvalues (and zero 

off diagonals – so that source of variation is isolated).

This implies we can rewrite any variance matrix in terms 

of orthogonal sources of variation (or components).

The columns of P is thus the dimension along which we maximize 

the variance (called the eigenvectors).



Using correlation matrix instead.

• Of course there are practical problems to using the variance-

covariance matrix – as scale and relative magnitude (and 

heterogeneity) would affect in the results.

• E.g. if one sector’s return is highly volatile, this would bias the factors 

loadings toward explaining the highly volatile asset.

• One way of dealing with this is to use a standardized form, such as the 

correlation matrix as input.

• Using the correlation matrix as input – the eigenvalues on the diagonal 

will sum to the number of variables (can you see why?).



How many components to consider?

• Using the correlation matrix as opposed to the covariance matrix 

places all the variables on equal footing i.t.o. system variance 

contribution – i.e. as if each variable has variance = 1

• Using the Covariance matrix would imply variables with highest 

variation would dominate the first component – regardless of 

correlation with other variables.

• As eigenvalues sum to 𝑘, we could consider only those components 

that have values exceeding 1.



…How it is calculated

• Of course in practice the covariance matrix ∑ and correlation 

matrix 𝜌 are unknown, yet it can be consistently estimated using 

the sample statistics as:

෡∑ = ො𝜎 =
1

𝑇 − 1
. 𝑟𝑡 − ҧ𝑟 𝑟𝑡 − ҧ𝑟 ′ , ҧ𝑟 =

1

T
∑𝑟𝑡

ො𝜌 = መ𝑆−1෡∑ መ𝑆−1 , መ𝑆 = 𝑑𝑖𝑎𝑔( ෞ𝜎11, … ෞ𝜎𝑘𝑘)



How many components to consider?

• As there are no set of rules for deciding on how many 

components to regard as significant in contributing to 

variation, we can (e.g.) decide on the amount of variation 

that we want to explain (consider then components up to 

when the proportion of variance explained exceeds 80%), 

include all PC’s larger than 1 (Kaizer) or we could define a 

set amount to add to meaning (e.g. consider only three PCs: 

1st being market effects, 2nd being labelled as sector specific, 

3rd labelled as global effects) ; another is to use the Broken 

Stick appraoch, Elbow approach, Kaizer-Guttman, etc.



Principal Components Analysis
Date: 08/19/14   Time: 14:19
Sample: 6/01/2000 6/03/2014
Included observations: 3182
Balanced sample (listwise missing value deletion)
Computed using: Ordinary correlations
Extracting 7 of 7 possible components

Eigenvalues: (Sum = 7, Average = 1)
Cumulative Cumulative

Number Value   Difference Proportion Value Proportion

1 5.045559 4.445853 0.7208 5.045559 0.7208
2 0.599706 0.200541 0.0857 5.645264 0.8065
3 0.399164 0.047710 0.0570 6.044429 0.8635
4 0.351454 0.118654 0.0502 6.395883 0.9137
5 0.232801 0.024959 0.0333 6.628684 0.9470
6 0.207842 0.044367 0.0297 6.836525 0.9766
7 0.163475 ---    0.0234 7.000000 1.0000

Eigenvectors (loadings): 

Variable PC 1  PC 2  PC 3  PC 4  PC 5  PC 6  PC 7  

DLZACD 0.399653 -0.225599 -0.164710 -0.131873 0.133209 -0.730104 0.440530
DLZACS 0.393238 -0.205058 -0.275500 -0.139782 0.649176 0.529885 0.075283
DLZAEN 0.334756 0.690980 0.301130 -0.563787 -0.002749 0.025023 0.036283
DLZAFN 0.407591 -0.202602 -0.095173 -0.119991 -0.113909 -0.202294 -0.845853
DLZAIND 0.396247 -0.128436 -0.286717 -0.038236 -0.734807 0.358582 0.272584
DLZAMT 0.351651 0.523858 -0.191863 0.742692 0.088820 -0.065774 -0.036026
DLZATC 0.356061 -0.312463 0.823538 0.278863 -0.003478 0.108230 0.088780

Ordinary correlations:
 

DLZACD DLZACS DLZAEN DLZAFN DLZAIND DLZAMT DLZATC
DLZACD 1.000000
DLZACS 0.790434 1.000000
DLZAEN 0.586605 0.576588 1.000000
DLZAFN 0.827376 0.800076 0.610818 1.000000
DLZAIND 0.779450 0.767194 0.593116 0.809718 1.000000
DLZAMT 0.626554 0.623640 0.640192 0.640889 0.652977 1.000000
DLZATC 0.683055 0.653110 0.516745 0.710432 0.650553 0.541231 1.000000



• Consider the table at the top: we can decide to only use the 

first 2 components in order, e.g., to forecast the covariance 

of the 7 sector returns series.

• This follows as the first two components explain over 80%

of the variation in the sectors.

• Note that this implies a very high level of commonality in returns –

and by default: a high degree of comovement confirmed by the high 

levels of correlation at the bottom.

• Thus – we can ignore the other components without too 

much loss in generality (and thus reduce dimensionality from 

7 to 2).

Table



Table

• From the table the proportion of variance explained is merely the Eigenvalue 

divided by the amount of variables (as we use the correlation measure) in the 

system (
5.045

7
for 𝑃𝐶1). Thus PC1 accounts for more than 5 times the variation 

of any single variable

• The second table reports eigenvectors, or loadings, which describes the linear 

combination of the variables that yield explain the variation measured. This can 

also be thought of as the importance of each variable in accounting for the 

component’s variability

• We see 𝑷𝑪1 having a roughly equal weighting contribution, which might be reasonably 

interpreted as a common market effect.

• 𝑷𝑪2 shows that CD, CS, FN, IND and TC are loaded with the same sign (and roughly equal 

size), while EN & MT have a different sign and larger loadings (implying these sectors have a 

common factor loading for this PC and could be considered e.g. energy specific factors)…



Eigenvalues / Eigenvectors

• Conceptually, we can think of EIGENVALUES

as the length (or relative strength) of an axis in 

the 𝑘 −dimensional variable space (here: how 

much variation is explained).

• The EIGENVECTORS can then be thought of 

as determining the orientation of this axis –

remember: eigenvectors are associated with the 

eigenvalues, and are not unique, and as such can 

be rotated.



Scree Plots

• We can also consider scree plots as a means of assessing 

how many components to regard as significant. 

• By default, most statistical packages with built-in PCA 

abilities will show the ordered Eigenvalue plots as:

0

1
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3

4

5

6

1 2 3 4 5 6 7

Scree Plot (Ordered Eigenvalues)

From this scree 

plot we can see 

that the PC2 –

PC7 explain 

relatively little of 

the variation, and 

are roughly equal 

in contribution



Orthonormal loadings plot

• The orthonormal loadings plot can also be used to visually 

assess the loadings of the different variables for the 

respective PC’s
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Note that for 𝑃𝐶1, the 

loadings are roughly equal 

(around 0.4), while for 𝑃𝐶2

– the loadings vary 

substantially.



Scores Plot

• This plots the actual values of the components for all the 

observations in the sample (good way to check for outliers 

which can strongly affect PCA results)
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• From this we can clearly

see that 𝑃𝐶1 explains far

more variation than PC2

does… (wider than it is

high).

• Outliers are labelled by

dates. We see most

outliers being during 2008.



More PC plots

• To get an idea of the dispersion of the loadings across the 

PC’s, we can plot any amount of loadings easily – e.g. select 

the first four and plot it in XY pairs 
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Usefulness

• Many applications of this approach have been suggested in 

the past, with e.g. Connor and Korajczyk (86, 88, 93) 

suggesting the use of PCA for creating APT mimicking 

portfolios using the eigenvector weights (see e.g. Goyal, et 

al (2008) extending this analysis).

• The idea is that it allows investors to hold a weighted combination of 

assets whose return mimicks that of all the variables in the model.

• Other studies include Clarke, et al’s (2006) construction of 

MVPs using PCA ; Meric, et al (2008) on co-movement of 

sectors ; Aziakpono, et al (2011) on interest rate analyses 

for African countries.



Considerations

• Using covariance / correlation as the dispersion matrix requires 

consideration of common variance (e.g. are we studying similarly 

volatile returns or e.g. bonds and equities).

• Are the variables included sufficiently correlated to start with –

running PCA on uncorrelated variables does not provide us with 

much i.t.o. reduction in dimensionality.

• Outliers also have a significant impact on outcomes.

• If a variable has low loadings for the first few components – it 

indicates the variable is not contributing much to the variation in 

the system: Thus it can serve as a means of assessing which 

variables explain a significant proportion of system variation



Department of Economics  

Factor Analysis



Factor Analysis

• Factor analysis is a statistical method used to describe variability 

among observed, correlated variables in terms of a potentially 

lower number of unobserved variables called factors.

• Different from PCA, FA is a correlation-focused approach seeking 

to reproduce the inter-correlations among variables, in which the 

factors represent the common variance of variables. The 

part not explained is then defined as asset specific variance

• Factor analysis is also often used in data reduction to identify a 

small number of factors that explain most of the variance that 

is observed in a much larger number of variables.



FA - Intuitively

• Here follows a simple discussion of FA, as we will not be 

using this further in any great detail.

• Let’s consider how FA is used by referring to the oft cited 

example of Holzinger and Swineford (1939)’s psychological 

test results.

• The authors used psychological testing results from children 

in the form of 24 scores, including visuals, cubes, paragraphs, 

sentence, word meaning, etc.

• Their results are then aggregated in a Factor Analysis 

framework, where the first two significant factors explaining 

the variation constitute verbal and spatial attributes, e.g.



FA - Intuitively

• Suppose we define this example rather as 300 school students, 

and their scores in 4 tests (math, languages, science, biology) 

are 𝑀1, 𝑀2, 𝑀3, 𝑀4 respectively.

• Suppose we want to understand something about the students’ 

cognitive and verbal abilities.

• We can then define two linearly unrelated factors, and see what 

proportion of variance is ascribed to it:

𝑀1 = 𝛼1 + 𝛽11 𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒 + 𝛽12 𝑚𝑒𝑚𝑜𝑟𝑦 + 𝑒1

…

𝑀4 = 𝛼4 + 𝛽14 𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒 + 𝛽14 𝑚𝑒𝑚𝑜𝑟𝑦 + 𝑒4



FA - Intuitively

• Comprehensive and Memory are then the two factors of interest.

• The Beta parameters above are then regarded as the loadings as with PCA.

• Suppose we find the loadings on the two unobserved (but specified by us) 

factors to be as follows:

Variable Factor 1 Loading Factor 2 Loading

𝑀1 + 0

𝑀2 0 +

𝑀3 0 +

𝑀4 + 0

Where 0 means small (insignificant) loading and + being of same sign and significant.

This is then a plausible outcome, and we can interpret the importance of these abilities 

in explaining students’ marks



FA - Intuitively

• In this simple example, as comprehensive and memory abilities 

are not directly observed, we have to infer such abilities on the 

variation explained by the factors.

• This requires assuming (in the most simple form) that:

• The errors are student specific factors and are not correlated

• The common factors are independent (cognitive and memory abilities 

are thus unrelated)

• (More advanced models can see these assumptions relaxed).

• Making these assumptions, we then split the variation in all the 

variables between that which is common, and that which is 

variable specific (idiosyncratic) – i.e. not accounted for 

by the two Factors.



Types of Factor models with Financial 

Application

• Asset returns can e.g. be studied in a Factor model framework using (see 

Connor (1995)):

• Macroeconomic Factor models (using variables such as GDP growth 

rates, interest rates, inflation, etc. to describe commonality of variation in 

asset returns)

• Here, factors are observable and the model estimated using linear regression 

analysis (so its not truly PCA type)

• Fundamental Factor Models (using firm specific factors, incl. firm size, 

Price/Book Values, etc.)

• Statistical Factor Models (similar to that which has been described in 

PCA – i.e. treating the common factors as unobservable and estimating it 

using a mathematical construct)



Asset Returns Factor Models

• Studying asset return factor models can thus be set up as follows: Let 𝑟𝑖𝑡

be returns for asset 𝑖 at time 𝑡

𝑟𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖1. 𝑓1𝑡 +⋯+ 𝛽𝑖𝑚. 𝑓𝑚𝑡 + 𝜖𝑖𝑡 , ∀𝑖, 𝑡

• With: 

𝛽𝑖1 = Factor Loading for asset 𝑖′s return to factor 𝑓1

𝑓1𝑡

= Factor 1,which is part of the 𝑚

− common factors driving the share returns.

𝜖𝑖𝑡 = the asset specific factors (assumedWN and uncorrelated with fm

As mentioned, some factor models can relax the assumption of 

uncorrelated common factors.



Examples of Different Factor Models

• Macroeconomic Factor models:

• Single Factor Model – See Sharpe (1970) in the market model 

(also defined as the CAPM model)

• Multi-Factor model – see Roll, et all (1986) where the authors 

look at a Multifactor model for stock returns, explained by log 

differences of CPI and Employment figures.

• Fundamental Factor models:

• Fama-French approach (1992) using 3 fundamentals:

• Overall market return ; SMB (size) ; HML (Value vs Growth)



Examples of Different Factor Models

• Statistical Factor Analysis:

• As defining factors that explain common behaviour might be of 

interest in certain fields – financial economists are typically not 

as excited by the prospects in explaining asset returns.

• This is due in no small part to the immensely difficult task of 

identifying factors that clearly explain a significant part of the 

variation of asset returns.

• Statistical FA therefore allows the modeller to infer from the 

data what factors drive common returns, without imposing 

such factors (e.g. CPI, GDP) or trying to interpret it ex ante.

• We therefore treat the factors as UNOBSERVABLE



Using PCA to interpret Components as 

Factors

• As with our PCA example, we can interpret (loosely) the first 

two components as being, e.g., Market and Energy factors 

respectively.

• This implies doing Statistical FA using the Principal Component 

method.

• This method does not require the assumption of Normality of the 

data or having factors prespecified / calculated up front.

• We can also use MLE methods (that use normal density and 

requires prespecification for the number of common factors) to 

calculate values for 𝛽 and 𝐷 directly…)



Factor Rotation

• Another useful tool in Factor Analysis is that of factor rotation.

• Consider the following Factor model on detrended returns 

series:

𝑟𝑡 − 𝜇 = 𝛽. 𝑓𝑡 + 𝜖𝑡

• It can easily be shown and intuitively understood that for any 

orthogonal matrix 𝑃, we have for: 

𝛽∗ = 𝛽. 𝑃 & 𝑓𝑡
∗ = 𝑃′𝑓𝑡

That:

𝑟𝑡 − 𝜇 = 𝛽. 𝑓𝑡 + 𝜖𝑡 = 𝛽∗𝑓𝑡
∗ + 𝜖𝑡

• Thus we can rotate factors without changing the results.



Factor Rotation

• This implies that we can rotate the common factor loadings in 

the m-dimensional space so that we have clearer insight into 

the strength of the respective loadings.

• Kaiser’s Varimax criterion is often used as a means of 

rotation and works well in many applications.

• The Varimax procedure selects the orthogonal rotation matrix 𝑃, 

such that it spreads out the squares of the loadings on each factor 

as much as possible.

• Basically, this aids in interpreting the loadings of common 

factors by more clearly spreading it out.



Fitting FA

• We can fit factors to a Group as follows:

• Remember that we want to detrend the series in our model 

and then split the dispersion matrix (e.g. typically the 

correlation matrix) into the common variance part and 

the unique variance part.

• This implies the returns series 𝑟𝑖 to be written as:

𝑟𝑡 − 𝜇 = 𝛽. 𝑓𝑡 + 𝜖𝑡

With m-standardized factors, 𝑓𝑡, and the loadings contained in 

the matrix 𝛽. The residual will be labelled as the unique factors.



Fitting FA

• Remember the idea is that the Factor loading matrix, 𝛽, links the unobserved 

common factors to the observed data.

• The 𝑗𝑡ℎ row then loads the 𝑗𝑡ℎ variable’s common factors – i.e. being the 

coefficients to link it to the linear factor model (acting like the eigenvectors in 

PCA).

• We can then impose the following restrictions:

𝐸 𝑓𝑖 = 0 ; 𝐸 𝜀𝑖 = 0 ; 𝐸 𝑓𝑖 . 𝜀𝑖 = 0

𝐸 𝑓𝑖𝑓𝑖′ = 𝜙 ; 𝐸 𝜀𝑖𝜀𝑖 = 𝜎 = 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒.

• Then by construction we have:

𝑉𝑎𝑟 𝑟𝑖 = 𝐿𝜙L′ + 𝜎 = 𝑐𝑜𝑚𝑚𝑜𝑛 + 𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒



Fitting FA

• Then we can also calculate the factor structure matrix (which is the 

correlations between the variables and factors) :

𝑉𝑎𝑟 𝑟, 𝑓 = 𝐸 𝑟𝑖 − 𝜇 . 𝑓𝑖
′ = 𝐸 𝛽𝑓𝑖 + 𝜀𝑖 𝐹𝑖

′ = 𝛽.𝜙

The next step is to split the dispersion matrix into the common and unique 

components, is that we need to specify the amount of factors it needs to 

consider.

This is now similar to our discussion with the PCAs and deciding how many 

components to include in the analysis (and is arguably the single most 

important decision to make in FA.)



Fitting FA

• There exists then several methods to determining the optimal amount 

of factors to include:

• Kaiser-Guttman (most commonly used): chooses factors based on the 

amount of eigenvalues calculated on the dispersion matrix (correlation 

matrix in our case) that have values larger than 1 (or exceeds the average if 

using covariance matrix).

• Fraction of total variance explained – retain as many factors required for 

the sum of the 𝑚 − eigenvalues to exceed a threshold (say 80% / 95%)



Fitting FA

• MAP (minimum average partial) – computes average of the squared partial 

correlations after partialling out 𝑚 − components, choosing amount of 

factors that minimize this average.

• Others include Broken Stick (Jackson, 1993), S.E. Scree plot, Parallel 

Analysis (Humphreys & Montanelli, 1975), etc.



Fitting FA

• Estimation procedure

• The next choice involves how to estimate the FA procedure which 

calculates the factor loadings and specific variances. These include (amongst 

others):

• Principal Factors approach (see Gorsuch, 1993), Maximum Likelihood 

estimation of the Loadings directly, PACE, etc. can be chosen (see 

documentation for details).



Fitting FA

• Rotation

• We then also choose between several measures for rotating the factor 

loadings to facilitate the interpretation thereof.

• This follows as loadings are never unique, and can be rotated without changing 

the results.

• Scoring

• The next consideration regards scoring. As factors are unobserved and implied 

from the observed data – its calculation depends on estimates of loadings. 

Factor score estimates thus can be used in further diagnostic analyses



And get…

Factor Method: Principal Factors
Date: 08/20/14   Time: 10:53
Covariance Analysis: Ordinary Correlation
Sample: 6/01/2000 6/03/2014
Included observations: 3275
Number of factors: Kaiser-Guttman
Prior communalities: Squared multiple correlation

Loadings
F1 Communalit... Uniqueness

DLBRFNDM  0.583417  0.340375  0.659625
DLINFNDM  0.568124  0.322765  0.677235
DLZAFNDM  0.613676  0.376599  0.623401
DLCNFNDM  0.555513  0.308594  0.691406

Factor Variance Cumulative Difference Proportion Cumulative
F1  1.348333  1.348333 ---  1.000000  1.000000

Total  1.348333  1.348333  1.000000

Model Independenc... Saturated
Discrepancy  0.024964  0.819938  0.000000
Parameters  8  4  10

Degrees-of-freedo...  2  6 ---



Control for partial effect of US-fn:

Factor Method: Maximum Likelihood
Date: 08/20/14   Time: 11:03
Covariance Analysis: Ordinary Correlation
Sample: 6/01/2000 6/03/2014
Included observations: 3275
Partial analysis controlling for: DLUSFNDM
Number of factors: Kaiser-Guttman
Prior communalities: Squared multiple correlation
Convergence achieved after 3 iterations

Loadings
F1 Communalit... Uniqueness

DLBRFNDM  0.485095  0.235317  0.764689
DLINFNDM  0.576163  0.331964  0.668033
DLZAFNDM  0.548496  0.300848  0.699166
DLCNFNDM  0.583607  0.340597  0.659404

Factor Variance Cumulative Difference Proportion Cumulative
F1  1.208726  1.208726 ---  1.000000  1.000000

Total  1.208726  1.208726  1.000000

Model Independenc... Saturated
Discrepancy  0.033806  0.467683  0.000000

Chi-square statisti...  110.6463  1530.726 ---
Chi-square prob.  0.0000  0.0000 ---

Bartlett chi-square  110.5506  1529.713 ---
Bartlett probability  0.0000  0.0000 ---

Parameters  8  4  10
Degrees-of-freedo...  2  6 ---



Running a PCA estimate on this group

Principal Components Analysis
Date: 08/20/14   Time: 10:54
Sample: 6/01/2000 6/03/2014
Included observations: 3275
Computed using: Ordinary correlations
Extracting 4 of 4 possible components

Eigenvalues: (Sum = 4, Average = 1)
Cumulative Cumulativ...

Number Value   Difference Proportion Value Proportion

1 2.094560 1.294227 0.5236 2.094560 0.5236
2 0.800333 0.220101 0.2001 2.894893 0.7237
3 0.580231 0.055355 0.1451 3.475124 0.8688
4 0.524876 ---    0.1312 4.000000 1.0000

Eigenvectors (loadings): 

Variable PC 1  PC 2  PC 3  PC 4  

DLBRFNDM 0.499676 -0.543445 0.183324 0.649141
DLINFNDM 0.494689 0.485371 -0.686678 0.219479
DLZAFNDM 0.518061 -0.435939 -0.164209 -0.717360
DLCNFNDM 0.487052 0.528242 0.684033 -0.125855

Ordinary correlations:
 

DLBRFNDM DLINFNDM DLZAFNDM DLCNFNDM
DLBRFNDM 1.000000
DLINFNDM 0.308375 1.000000
DLZAFNDM 0.469924 0.350234 1.000000
DLCNFNDM 0.309877 0.422823 0.326416 1.000000



Department of Economics  

Which to use?

PCA or FA?



Do not use both

• You should not be using both estimation procedures on the 

same data, as they say something completely different.

• PCA – weighted linear combination of correlated variables, 

seeking to explain the maximal amount of variation by 

specifying a number of components which reduces rank

• FA – constructs unobserved (latent) factors that explain the 

variation of the observed variables (by indirectly measuring 

its influence on the observed variables), and are influenced 

by measurement error which we define as unique (asset 

specific / idiosyncratic) factors.



Sum

• If we seek to explain the variation in a dataset – we use FA 

to specify the factor of interest and then use it to explain 

which part of the variation is explained by this (unobserved, 

but implied) variable.

• The components of the PCA do not have interpretable 

value – it merely states the amount of variance that is 

attributable to the specific linear component calculated.

PCA model:

𝑟𝑖 = 𝛽. 𝑌
𝛽 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑌 = 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠)

Exploratory FA Model:

𝑟𝑖 = 𝛽. 𝑌 + 𝐸
𝑌 = 𝑐𝑜𝑚𝑚𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

𝛽 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 \ 𝐹𝑎𝑐𝑡𝑜𝑟 𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠
𝐸 = 𝑈𝑛𝑖𝑞𝑢𝑒 𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑟𝑎𝑡𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟𝑠



Conclusion: Keep in Mind…

• When studying Statistical FA or PCA’s – we assume no serial 

autocorrelation. This therefore has to be controlled for first if 

present (we can fit a VARMA model and use the residuals, e.g.).

• Also, note that the series need to be detrended – we will use 

the scale function in R.


