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What we will be discussing today

• Today we look at certain stylized facts of financial market returns, 

and how we typically measure it in financial econometrics.

• We will also be looking at some of the common matrix notations 

and techniques often encountered in the financial econometrics 

literature.



Reminder of some matrix concepts

• Matrix algebra concepts are important for 

understanding some of the most fundamental 

insights in financial econometrics.

• As such, the course will start with a very brief 

overview of some of the most relevant concepts 

in matrix notation.



What we know about matrices

• For any matrix: 𝐴 =
𝑎 ⋯ 𝑓
⋮ ⋱ ⋮
𝑒 ⋯ 𝑧 𝑅x𝐶

• Square Matrix: 𝐴 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

=  (R=C)

• Symmetric Matrix: 𝐴 =
𝑎 2 3
2 𝑒 7
3 7 𝑖

=  (b=d, g=c, h=f)

• Diagonal Matrix: 𝐴 =
𝑎 0 0
0 𝑒 0
0 0 𝑖

=  (off-diagonals = 0, diagonal ≠ 0)

• Identity Matrix: 𝐴 =
1 0 0
0 1 0
0 0 1

=> 𝐵𝐴 = 𝐴𝐵 = 𝐵𝐼 = 𝐵, ∀ matrix B



What we know about matrices

• Multiplication of a matrix: 𝐴Rx𝐶𝐵𝐶xM = CRxM

e.g. →
1 2
3 4

.
5 6
7 8

=
1 ∗ 5 + (2 ∗ 7) 1 ∗ 6 + 2 ∗ 8
(3 ∗ 5 + 4 ∗ 7) (3 ∗ 6 + 4 ∗ 8)

• Determinant of a matrix:

• If 𝐴 =
1 2
3 4

→ det A = A = 1 ∗ 4 − 2 ∗ 3 = −2.

Determinants can be found on square matrices. The determinant of 

A is therefore a number. If det 𝐴 ≠ 0, then 𝐴 has a unique 

solution, is non-singular and can thus be inverted.

If 𝐷𝑒𝑡 𝐴 = 0, there are either many solutions or none at all.



What we know about matrices

• Transpose: 𝐴 =
1 2 3
4 5 6

; 𝐴′ =
1 4
2 5
3 6

• Rank (A) → # linearly independent rows in the matrix (also equal to number of 

linear indep columns…)

𝐴 =
1 2
3 4

→ 𝑅𝑎𝑛𝑘 𝐴 = 2 (as row 1 cannot be expressed 

as a linear multiple of row 2).

𝐴 =
1 2
4 8

→ 𝑅𝑎𝑛𝑘 𝐴 = 1 (as row 1 can be expressed 

as a linear multiple of row 2 → 𝑅2 = 4 ∗ 𝑅1

The Rank is thus a very useful way of determining whether all the variables 

(rows) in a model are independent. Remember OLS requires 𝑥1, … 𝑥𝑁 to be 

independent if they are exogenous variables…

Thus we can evaluate this by testing if 𝑅𝑎𝑛𝑘 𝑋 𝑅x𝑅 = 𝑅



What we know about matrices

If 𝐴 =

𝑅1,1 ⋯ 𝑅1,20
⋮ ⋱ ⋮

𝑅10,1 ⋯ 𝑧10,20
10𝑥20

• If 𝐴 is of full Rank, it implies that 𝑅𝑎𝑛𝑘 𝐴 = 10, which implies that all the variables 

included 𝑅1 → 𝑅10 can be considered linearly independent (if variables → rows).

• If 𝑹𝒂𝒏𝒌 𝐴 < 10 → the opposite holds and 𝐴 is considered singular (Singularity of 

𝑨 implies no matrix 𝑩 exist such that 𝐴𝐵 = 𝐵𝐴 = 𝐼, i.e. 𝑨 has no inverse)

• The inverse of a matrix is denoted as: 𝑨−𝟏

• So that: 𝐴−1𝐴 = 𝐴𝐴−1 = 𝐼.

• 𝐴 can only be inverted if 𝐴 is non-singular (has full rank), and is 𝐬𝐪𝐮𝐚𝐫𝐞 (𝑅 = 𝐶)



What we know about matrices

• If 𝐴 =

𝐷1 𝑎 𝑏
𝑐 𝐷2 𝑓
𝑑 𝑒 𝐷3

, the Trace of A is: 𝑇𝑟𝑎𝑐𝑒 𝐴 = 𝐷1 + 𝐷2 + 𝐷3

• Eigenvalues: 

For any Square matrix  𝐴RxR and scalar 𝑐 with 𝑐Rx1 ≠ 0:

We can write 𝐴𝑐 = 𝜆𝑐, with 𝜆 →set of scalars.

This can of course be rewritten as:

𝐴𝑐 = 𝜆I𝑝𝑐 → 𝐴 − 𝜆𝐼𝑝 𝑐 = 0

For the system: 𝐴 − 𝜆𝐼𝑝 𝑐 to have a non-zero solution, it would require 𝐴 − 𝜆𝐼𝑝 to be non-

singular, because 𝑐 ≠ 0.

This can be tested by taking the determinant:  𝐴 − 𝜆𝐼𝑃 = 0

Here we call 𝜆 the characteristic root of the system.



Example of Eigenvalues

• For 𝐴 =
1 2
3 4

→ A − 𝜆𝐼𝑃 =
1 2
3 4

− 𝜆
1 0
0 1

=
1 − 𝜆 2
3 4 − 𝜆

= 1 − 𝜆 ∗ 4 − 𝜆 − 6 = 𝜆2 − 5𝜆 − 6

= (𝜆 − 2)(𝜆 − 3)

Thus the solution to the A − 𝜆𝐼𝑃 system in this case is:

𝜆 = 2 & 𝜆 = 3

Thus the Eigenvalues of the system is 2 & 3.

Similarly, suppose we have 𝐵 =
2 1
4 2

, clearly Row 1 is not linearly independent 

of Row 2 (2 ∗ 𝑅1 = 𝑅2). You can check that the eigenvalues then are: 𝜆 = 0 and 

𝜆 = 4. Because one of the eigenvalues is zero, it implies the matrix is not of full 

rank and thus the rows not all linearly independent (i.e. 𝐵 = 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟).

So what makes this special?!



Eigenvalues

• Firstly, if all the eigenvalues are non-zero (like in the example), it implies 

that the matrix is of full-rank and thus non-singular.

• Also interesting is that the sum of the eigenvalues is the trace of the 

matrix, while the product of the eigenvalues is the determinant.

• Eigenvectors can then be thought of as the values of 𝒄 corresponding to 

the eigenvalues. 

• This implies that for any non-zero vector 𝒗: 𝑨𝒗 = 𝝀𝒗

• Thus 𝑣 is an eigenvector of 𝐴 if 𝐴𝑣 is a scalar multiple of 𝑣.

• E.g. 𝒙 =
1
2

is an eigenvector of 𝐴 =
3 0
8 −1

, corresponding to the 

eigenvalue of 𝜆 = 3 since: 𝐴𝒙 =
3 0
8 −1

1
2

=
3
6

= 𝟑. 𝑥



What we know about matrices

Equivalent statements of matrices can be summarized as:

If 𝐴 is a nxn Matrix, then:

• 𝐴𝑥 = 0 can only be solved when 𝑥 = 0

• 𝐴𝑥 = 𝑏 is consistent for every 𝑏 and has only one unique solution for every nx1 

vector 𝑏 (so that betas are unique in a regression)

• det 𝐴 ≠ 0

• Column and row vectors of 𝐴 are all linearly independent

• 𝐴 has full rank (=n) and is thus non-singular.

• 𝜆 = 0 is not an eigenvalue of 𝐴.

• The eigenvectors of 𝐴 correspond to a linearly independent set of vectors (thus 

an implicit form of orthogonalization is achieved!)



Orthogonality, Orthonormality

• Orthogonality implies in vector form that two vectors are 

perpendicular:

• From this it is clear that the two lines are independent & 

uncorrelated objects. Thus for two objects orthogonality

would imply that the covariance matrix would look as 

follows:

𝜎 =
𝜎1
2 0

0 𝜎2
2 , implying that the covariances are zero, and thus 

the two series are orthogonal.



Orthogonality

• The concept of orthogonality can be extended to 

matrices – where it is defined as: 𝐴𝑇 = 𝐴−1

• Also, if 𝑨 = orthogonal, then it can be shown that 

𝐝𝐞𝐭 𝑨 = 𝟏 or −𝟏

• All the rows (and columns) of 𝐴 form an orthonormal set.

• An orthonormal set of vectors implies that all the vectors (rows 

of A) in the set are mutually orthogonal and all of length one. 

• Thus all the rows can be expressed in normalized form (
𝑥−𝜇

𝜎
) as 

perpendicular vectors of length 1.

• Or equivalently: all the rows of 𝑨 are independent.



Why is testing for orthogonality useful 
in econometrics?

• As the law of parsimony in econometrics dictates - we should include 

as few variables into an equation as possible; thus we should ideally 

include a set of variables that each explain something completely new. 

This means if 𝑥1 is saying roughly the same as 𝑥2, we should not 

include both.

• Thus testing whether 𝑋1, …𝑋𝑁 are all orthogonal, is akin to testing 

whether all the exogenous variables are linearly independent (and thus 

all the covariances between them are zero – and thus they are all 

uncorrelated) → with each adding new information to the regression
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Financial Asset Return data

Stylized Facts about Financial Time-Series data



Financial asset returns

• Arguably the main objective of financial econometrics in general is to 

observe asset returns and find out what drives it.

• Asset returns can be defined as the difference between an asset’s 

price at two different time-intervals, and because of the persistence 

in data – this differencing should remove the unit root.

• Studying financial returns as opposed to asset price levels also 

removes the scale of the data – allowing cross sector and cross asset 

comparisons. The approximate stationarity in returns series also 

allows us to use common statistical techniques. Two types are used:

Simple returns: Log Returns:
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Financial asset returns

• Two stylized facts emerge for most financial asset 

returns over time:

• High persistence (requiring First Differencing to remove the 

unit root)

• Level increases in volatility.

• Both these factors lead us to the nearly universal 

treatment of financial time-series: using the Dlog(X).

• Using Log differenced returns is more than just a 

useful mathematical tool, it has unique interpretation 

value as well…



Financial asset returns

• Log returns are interpreted as the continuously compounded returns of 

a series.

• It is also useful i.t.o. addition: e.g. from daily returns:

• 𝑅1 = ln 𝑝1 − ln 𝑝0 … 𝑅5 = ln 𝑝5 − ln 𝑝4

• The weekly continuously compounded return is the sum of the daily 

returns: 𝑅𝑤𝑒𝑒𝑘= σ𝑖=1
5 𝑅𝑖

(or annual returns are the sum of the monthly returns, etc.)

• Typically we will find that although asset prices are nearly always non-

stationary and time dependent – their returns typically represent a 

stationary series



Financial asset returns

• Calculating real log returns (e.g. Nominal share price returns adjusted for 

CPI) are also very simple.

• This can be done simply as follows:

• If 𝑃𝑡 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝐴𝐵𝑆𝐴 𝑠ℎ𝑎𝑟𝑒𝑠 &  𝐶𝑃𝐼𝑡 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶𝑃𝐼 𝑖𝑛𝑑𝑒𝑥 𝑎𝑡 𝑡

• Then the Real price is: 𝑃𝑅𝑒𝑎𝑙 = (𝑃𝑡/𝐶𝑃𝐼𝑡) ∗ 100

• And the one-period real return (continuously compounded) is:

𝑅𝑅𝑒𝑎𝑙,𝑡 = ln
𝑃𝑡
𝑃𝑡−1

÷
𝐶𝑃𝐼𝑡
𝐶𝑃𝐼𝑡−1

= 𝑑𝑙𝑜𝑔 𝑃𝑡 − 𝑑𝑙𝑜𝑔 𝐶𝑃𝐼𝑡

• Or in simpler notation:  𝑥𝑡 = 𝑑𝑙𝑜𝑔 𝑋𝑡 → 𝑟𝑅𝑒𝑎𝑙 = 𝑟𝑡 − 𝜋𝑡

In the practical class, I will ask you to calculate the real return on the JSE ALSI for 2013.



Financial asset returns

• One downside of log returns: Adding a portfolio of returns become 

problematic.

• To illustrate this, suppose that 𝑅𝑖 = log 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡 𝑖 .

• If the portfolio has weighting of 𝑤𝑖 for each asset’s inclusion, then 

Log R𝑝,𝑡 = l𝑜𝑔 1 + σ𝑖=1
𝑁 𝑤𝑖 .

∆𝑃𝑡

𝑃𝑡−1
≠ σ𝑖=1

𝑁 𝑤𝑖 . 𝑑𝑙𝑜𝑔(𝑅𝑖,𝑡)

• This is because from log notation: 𝐿𝑜𝑔 𝑥 + 𝑦 ≠ log 𝑥 + log(𝑦)

• Thus in order to construct portfolio returns, we normally use the simple 

returns that can be added.



Conditional / Unconditional

• Conditionality takes the past information into account.

• Think back on the ARMA modelling:

• For 𝑌𝑡 = 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐴𝑅 1 𝑝𝑟𝑜𝑐𝑒𝑠𝑠:

• Conditional Mean Equation  → 𝐸𝑡−1 𝑦𝑡 = 𝛼 + 𝛽 y𝑡−1

• Unconditional Moments  → 𝐸 𝑦𝑡 =
𝛼

1−𝛽
; 𝑉𝑎𝑟 𝑦𝑡 =

𝜎2

1−𝛽2

• Thus we take information from period 𝑡 − 1 into account when 

measuring the conditional mean equation, but for the 

unconditional mean equation we calculate the long term 

(constant) mean.

• We will use the concept of conditional moments further…



Stylized Facts: Financial asset returns 

• Despite us not being able to really generalize across all sectors and 

financial assets (e.g. shares, bonds, commodities and derivatives all 

behave very distinctly), there are some key aspects that are 

inherent to nearly all financial asset returns.

These include the following:

• Heavy (fat) Tail distributions

• Asymmetries in return persistence – negative news cause more 

pronounced periods of persistence than positive news. See Fischer 

Black (1976) who explain this in terms of leverage effects on the 

balance sheets of firms – implying simply that the leverage ratio 

(indebtedness) of a firm increases if the value of the firm decreases



Stylized Facts: Financial asset returns 

• Assumed Distributions aggregate to log normality in returns when 𝑡 → ∞

(strong assumption…)

• Timing matters: When markets are closed, information accumulates, and 

is acted upon when it opens again. Thus opening prices, prices after 

weekends / holidays and prices after big announcements can display far 

more volatility than normal. This is NB for high frequency data (e.g. daily).

• Volatility clustering: Empirical data show that most return series display 

strong persistence in volatility, also known as volatility clustering or 

momentum. This positive autocorrelation found in second moments of 

returns (i.e. return variances) imply the presence of conditional

heteroskedasticity, even though the series displays homoscedasticity over 

the longer term (thus being unconditionally homoscedastic)



Stylized Facts: Financial asset returns 

• Long memory in second moments: Engle, Bollerslev and several 

others showed that financial asset returns, although showing 

relatively low memory in mean returns (as a result of market 

efficiencies) – show long memory in second order moments. This 

will be returned to when we model fractional integration in the 

second order moments.

• Typically reject the JB-Normality tests: 

𝐽𝐵 =

𝑆𝐾2

6
𝑡

+

𝐸𝐾𝑈2

24
𝑇

~𝜒2 1 + 𝜒2 1 ~ 𝜒2(2)

• Which is a joint test of the normality of the skewness and kurtosis.



Recap: Moments

• The term, moments, are often used in econometrics. 

• Let’s consider the first four moments of a Log Return variable:

If 𝑋 = 𝑑𝑙𝑜𝑔(𝑌), we typically expect the following four moments (centred) :

𝑚1 = 𝒎𝒆𝒂𝒏 (𝒕𝒉𝒆 𝒄𝒆𝒏𝒕𝒓𝒆) = 𝐸 𝑋 = 𝜇 = 0

𝑚2 = 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 (𝒅𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏) = 𝑉𝑎𝑟 𝑌 = 𝐸 𝑋2 − 𝐸 𝑋 2 = 𝜎2

𝑚3 = 𝑺𝑲 = 𝒔𝒌𝒆𝒘𝒏𝒆𝒔𝒔 = 𝐸[
𝑋−𝜇

𝜎

3
]→ Asymmetry of the distribution of returns 

(The sign indicates whether positive or negative returns are more likely)

𝑚4 = 𝑬𝑲𝑼 = 𝑲𝒖𝒓𝒕𝒐𝒔𝒊𝒔 = 𝐸[
𝑋−𝜇

𝜎

4
]→ Thickness of the tails relative to Normal 

distribution.  Normal distr have 𝑚4 = 3, and financial returns typically above 3



Stylized facts of financial asset return data

• Looking at 𝐴𝐵𝑆𝐴’s daily closing prices for the last 

12 months.



NB for getting asset prices / indexes

• As most of you will be downloading share price / index data, remember 

the following crucial point:

• Shares: The payout of dividends and stock splits distort closing prices, and as 

such you should consider adjusted closing prices, which takes into account the 

above and more.

• Indexes: Similarly, dividends, splits, exercising options, etc. also effect a basket 

of assets – not reflected in closing prices. This needs to be taken into account 

when studying index data, and as such researchers often use adjusted closing 

prices or Total Return Indexes (which is what investors typically are most 

interested in when holding a portfolio).

• Now the choice of Gross / Net dividends can be a bit of a contentious choice… 

see: http://europe.etf.com/europe/publications/journal-of-indexes/articles/7786-

dividend-tax-leakage-in-popular-equity-indices.html?showall=&fullart=1&start=5

http://europe.etf.com/europe/publications/journal-of-indexes/articles/7786-dividend-tax-leakage-in-popular-equity-indices.html?showall=&fullart=1&start=5


Stylized facts of financial asset return data

• The data was summarized as follows in:
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M7 M8 M9 M10 M11 M12 M1 M2 M3 M4 M5 M6 M7

2012 2013

DLABSA

DLABSA

 Mean  0.023136

 Median  0.034062

 Maximum  5.867170

 Minimum -5.451793

 Std. Dev.  1.537987

 Skewness  0.138016

 Kurtosis  4.606721

 Jarque-Bera  27.46337

 Probability  0.000001

 Sum  5.737711

 Sum Sq. Dev.  584.2546

 Observations  248



ABSA real daily returns distribution for the 
year

• From the output above, it is clear that volatility in returns has increased in 

the latter part of the sample (the banking industry has in the last month 

seen some dramatic swings in share prices…).

• Also compare this to some of the stylized facts that we discussed:

• Skewness = the share returns are significantly positively skewed.

• It also displays  a Leptokurtic distribution (Kurtosis > 3), implying it has a fattish

tailed distribution - although not as much as you’d typically see for other 

returns.

• It also unsurprisingly strongly rejects the Jarque-Bera test for normality (p→0).

• The mean of the daily continuously compounded return is 0.02%, 

with a std deviation of 1.53% (which is pretty high relative to the 

mean!!).



• The Histogram can also be viewed (and clearly shows 
the non-normality of returns and the fat tail):
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ZA Financials index TRI

• Let’s fit an AR(1) term on the Financials index 

continuously compounded returns, as well as 

including an intercept (as in the long term the 

returns are slightly positive, as with ABSA’s 

returns), and then study the closeness of our fit.

• Most models on asset returns use the most 

parsimonious and naïve model available when 

separating noise (𝜀𝑡) from the model (𝜇𝑡).



DLZAFN Fitted 
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Normality test:   Chi^2(2)  =   977.57 [0.0000]**
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Dependency across assets



Linear dependency across assets

• Up to now we have discussed some stylized facts about individual series.

• Now we discuss some empirical regularities for asset co-dependency…

• First of all, remember that the correlation coefficient of 𝑋&𝑌 is:

𝜌𝑋,𝑌 =
𝑐𝑜𝑣 𝑋, 𝑌

𝜎𝑋𝜎𝑦

Typically these asset price and asset market correlations tend to increase in 

periods of turmoil (turmoil leads to asset market price homogeneity), with a 

negative correlation between assets indicative of the ability to diversify.



Linear dependency across assets

• While static unconditional correlations of past returns might 

give us an indication of the general diversification potential of 

different assets / markets (think Markowitz theories), the need 

to understand how conditional correlation changes over time 

and what drives these changes are vital for researchers and 

practitioners alike.

• This will be returned to in more detail in the Multivariate GARCH 

sections, where we will study time-varying conditional 

correlations.
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Finding inspiration for your research 

paper…



When reading the literature on finance

1. Does the paper involve the development of a theoretical 

model or is it merely a technique looking for an application, 

or an exercise in data mining? – Remember check for other 

techniques that do the same thing, and ask yourself 

whether this technique is best for your question.

2. Is the data of “good quality”? Is it from a reliable source? Is 

the size of the sample sufficiently large for asymptotic 

theory to be invoked? – Remember to check the data first!

3. Have the techniques been validly applied? Have diagnostic 

tests for violations of been conducted for any assumptions 

made in the estimation of the model?



When reading the literature on finance

4. Have the results been interpreted sensibly? Is the strength of 

the results exaggerated? Do the results actually address the 

questions posed by the authors? – Often techniques are 

validly used, but the interpretations are unclear. 

Remember financial research is not an exercise of 

mathematical ability, but rather of practical use.

5. Are the conclusions drawn appropriate given the results, or 

has the importance of the results of the paper been 

overstated? – ALWAYS be critical of your own work, and 

don’t be afraid to 


