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PREFACE

I am often asked by readers of Analysis of Financial Time Series: Can you make the
analysis of financial data easier? I am also asked by my students: How to simplify the
empirical work and what is the relevance of statistics to finance? These are important
questions. They motivate me to write this introductory text.

To simplify empirical data analysis, I decided to use R for all analyses. My
decision is based on several reasons. First, R is free and available for most operat-
ing systems. Second, many researchers have developed nice packages for analyzing
financial data, especially RMetrics has many useful packages. Third, the capability
of R packages improves dramatically and rapidly. This trend is expected to continue.
Fourth, I wrote some simple R scripts to perform specific analyses in several places.
These scripts serve two purposes. They attain to the special need I have in presenting
the concepts and methods. More importantly, they demonstrate that once a reader has
some experience with R, he/she can easily tailor R commands and scripts into his/her
need to simplify analysis of financial data.

To simplify the concept of econometric and statistical theory, I tried to present it
in a concise manner and used extensively real examples in demonstration. The book
has seven chapters; two of them are case studies. These two chapters demonstrate
the relevance of statistics in finance. The other chapters are organized to help readers
understand the concepts of and gain experience in analyzing financial data. Chapter
1 introduces financial data and discusses their summary statistics and visualization. It
also introduces R so that readers can start to explore financial data. Chapter 2 provides
basic knowledge of linear time series analysis. It covers simple econometric models
that are useful in business, finance and economics. I tried to make the chapter as com-
prehensive as possible while keeping it concise. It includes exponential smoothing
for forecasting and methods for model comparison. Chapter 3 considers three case
studies. The models used are not simple, but they are designed to help readers under-
stand the value and limitations of linear time series models in applications. Chapter 4
studies different approaches to calculate asset volatility and various volatility models.
The approaches discussed include methods that use daily open, high, low and close
stock prices. Again, I tried to make the chapter as comprehensive as possible while
avoiding much of the heavy theory. Chapter 5 considers some applications of volatility
models in finance. It is intended to help readers gain better insight into the term struc-
ture of volatility and use of volatility in financial applications. Chapter 6 deals with
high-frequency financial data, including simple models for price changes and trading
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intensity and realized volatility. Finally, Chapter 7 studies quantitative methods for
risk management, including value at risk and conditional value at risk. The chapter
covers important econometric and statistical methods to assess risk, including those
based on extreme value theory and quantile regression.

The book contains many plots and demonstrations. The goal is to simplify the
analysis of financial data and to make the results easily understandable. Like many
authors, I struggle to obtain a balance between the length of the book and new develop-
ments in financial econometrics. Omission of some important topics is unavoidable.
There is some overlap with Analysis of Financial Time Series in coverage, but all
examples are new.

I like to express my sincere thanks to my wife. Without her love and support, this
book could not be written. I also like to thank my children; they are my inspiration and
help me editing some chapters. Many readers and students constantly give me feedback
and suggestions. Their input is invaluable. Finally, I like to thank Steve Quigley,
Jacqueline Palmieri and their Wiley team for their support and encouragement.

The web page of the book is
http://faculty.chicagobooth.edu/ruey.tsay/teaching/introTS.

R. S. T.
Chicago, Illinois
October 2012



1

FINANCIAL DATA AND THEIR
PROPERTIES

The importance of quantitative methods in business and finance has increased
substantially in recent years because we are in a data-rich environment and the
economies and financial markets are more integrated than ever before. Data are
collected systematically for thousands of variables in many countries and at a finer
timescale. Computing facilities and statistical packages for analyzing complicated and
high dimensional financial data are now widely available. As a matter of fact, with
an internet connection, one can easily download financial data from open sources
within a software package such as R. All of these good features and capabilities are
free and widely accessible.

The objective of this book is to provide basic knowledge of financial time series,
introduce statistical tools useful for analyzing financial data, and gain experience
in financial applications of various econometric methods. We begin with the basic
concepts of financial data to be analyzed throughout the book. The software R is intro-
duced via examples. We also discuss different ways to visualize financial data in R.
Chapter 2 reviews basic concepts of linear time series analysis such as stationarity and
autocorrelation function, introduces simple linear models for handling serial depen-
dence of the data, and discusses regression models with time series errors, seasonality,
unit-root nonstationarity, and long-memory processes. The chapter also considers

An Introduction to Analysis of Financial Data with R, First Edition. Ruey S. Tsay.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.



2 FINANCIAL DATA AND THEIR PROPERTIES

exponential smoothing for forecasting and methods for model comparison. Chapter 3
considers some applications of the models introduced in Chapter 2 in the form of case
studies. The goal is to help readers understand better data analysis, empirical modeling,
and making inference. It also points out the limitations of linear time series models
in long-term prediction. Chapter 4 focuses on modeling conditional heteroscedasticity
(i.e., the conditional variance of an asset return). It introduces various econometric
models for describing the evolution of asset volatility over time. The chapter also dis-
cusses alternative methods to volatility modeling, including use of daily high and low
prices of an asset. In Chapter 5, we demonstrate some applications of volatility models
using, again, some case studies. All steps for building volatility models are given, and
the merits and weaknesses of various volatility models are discussed, including the
connection to diffusion limit of continuous time models. Chapter 6 is concerned with
analysis of high frequency financial data. It starts with special characteristics of high
frequency data and gives models and methods that can be used to analyze such data.
It shows that nonsynchronous trading and bid-ask bounce can introduce serial correla-
tions in a stock return. It also studies the dynamic of time duration between trades and
some econometric models for analyzing transaction data. In particular, we discuss the
use of logistic linear regression and probit models to study the stock price movements
in consecutive trades. Finally, the chapter studies the realized volatility using intraday
log returns. Chapter 7 discusses risk measures of a financial position and their use
in risk management. It introduces value at risk and conditional value at risk to quan-
tify the risk of a financial position within a holding period. It also provides various
methods for calculating risk measures for a financial position, including RiskMet-
rics, econometric modeling, extreme value theory, quantile regression, and peaks over
thresholds.

The book places great emphasis on application and empirical data analy-
sis. Every chapter contains real examples, and, in many occasions, empirical
characteristics of financial time series are used to motivate the development of
econometric models. In some cases, simple R scripts are given on the web page
for specific analysis. Many real data sets are also used in the exercises of each
chapter.

1.1 ASSET RETURNS

Most financial studies involve returns, instead of prices, of assets. Campbell et al.
(1997) give two main reasons for using returns. First, for average investors, return of
an asset is a complete and scale-free summary of the investment opportunity. Second,
return series are easier to handle than price series because the former have more
attractive statistical properties. There are, however, several definitions of an asset
return.

Let Pt be the price of an asset at time index t . We discuss some definitions of
returns that are used throughout the book. Assume for the moment that the asset pays
no dividends.
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One-Period Simple Return. Holding the asset for one period from date t − 1
to date t would result in a simple gross return

1 + Rt = Pt

Pt−1
or Pt = Pt−1(1 + Rt ). (1.1)

The corresponding one-period simple net return or simple return is

Rt = Pt

Pt−1
− 1 = Pt − Pt−1

Pt−1
. (1.2)

For demonstration, Table 1.1 gives five daily closing prices of Apple stock in
December 2011. From the table, the 1-day gross return of holding the stock from
December 8 to December 9 is 1 + Rt = 393.62/390.66 ≈ 1.0076 so that the corre-
sponding daily simple return is 0.76%, which is (393.62-390.66)/390.66.

Multiperiod Simple Return. Holding the asset for k periods between dates
t − k and t gives a k -period simple gross return

1 + Rt [k ] = Pt

Pt−k
= Pt

Pt−1
× Pt−1

Pt−2
× · · · × Pt−k+1

Pt−k

= (1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1)

=
k−1∏
j=0

(1 + Rt−j ).

Thus, the k -period simple gross return is just the product of the k one-period simple
gross returns involved. This is called a compound return . The k -period simple net
return is Rt [k ] = (Pt − Pt−k )/Pt−k .

To illustrate, consider again the daily closing prices of Apple stock of Table 1.1.
Since December 2 and 9 are Fridays, the weekly simple gross return of the stock is
1 + Rt [5] = 393.62/389.70 ≈ 1.0101 so that the weekly simple return is 1.01%.

In practice, the actual time interval is important in discussing and comparing
returns (e.g., monthly return or annual return). If the time interval is not given, then
it is implicitly assumed to be one year. If the asset was held for k years, then the
annualized (average) return is defined as

Annualized{Rt [k ]} =
⎡
⎣k−1∏

j=0

(1 + Rt−j )

⎤
⎦

1/k

− 1.

TABLE 1.1. Daily Closing Prices of Apple Stock from December 2 to 9, 2011

Date 12/02 12/05 12/06 12/07 12/08 12/09
Price($) 389.70 393.01 390.95 389.09 390.66 393.62
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This is a geometric mean of the k one-period simple gross returns involved and can
be computed by

Annualized{Rt [k ]} = exp

⎡
⎣ 1

k

k−1∑
j=0

ln(1 + Rt−j )

⎤
⎦ − 1,

where exp(x) denotes the exponential function and ln(x) is the natural logarithm of the
positive number x . Because it is easier to compute arithmetic average than geometric
mean and the one-period returns tend to be small, one can use a first-order Taylor
expansion to approximate the annualized return and obtain

Annualized{Rt [k ]} ≈ 1

k

k−1∑
j=0

Rt−j . (1.3)

Accuracy of the approximation in Equation (1.3) may not be sufficient in some appli-
cations, however.

Continuous Compounding. Before introducing continuously compounded
return, we discuss the effect of compounding. Assume that the interest rate of a bank
deposit is 10% per annum and the initial deposit is $1.00. If the bank pays interest
once a year, then the net value of the deposit becomes $1(1+0.1) = $1.1, 1 year
later. If the bank pays interest semiannually, the 6-month interest rate is 10%/2 =
5% and the net value is $ 1(1 + 0.1/2)2 = $1.1025 after the first year. In general,
if the bank pays interest m times a year, then the interest rate for each payment
is 10%/m and the net value of the deposit becomes $1(1 + 0.1/m)m , 1 year later.
Table 1.2 gives the results for some commonly used time intervals on a deposit of
$1.00 with interest rate of 10% per annum. In particular, the net value approaches

TABLE 1.2. Illustration of the Effects of Compounding: the Time Interval is 1 Year and the
Interest Rate is 10% Per Annum

Number of Interest Rate Net
Type Payments per Period Value

Annual 1 0.1 $1.10000
Semiannual 2 0.05 $1.10250
Quarterly 4 0.025 $1.10381
Monthly 12 0.0083 $1.10471

Weekly 52
0.1

52
$1.10506

Daily 365
0.1

365
$1.10516

Continuously ∞ $1.10517
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$1.1052, which is obtained by exp(0.1) and referred to as the result of continuous
compounding . The effect of compounding is clearly seen.

In general, the net asset value A of continuous compounding is

A = C exp(r × n), (1.4)

where r is the interest rate per annum, C is the initial capital, and n is the number of
years. From Equation (1.4), we have

C = A exp(−r × n), (1.5)

which is referred to as the present value of an asset that is worth A dollars n years
from now, assuming that the continuously compounded interest rate is r per annum.

Continuously Compounded Return. The natural logarithm of the simple
gross return of an asset is called the continuously compounded return or log return:

rt = ln(1 + Rt ) = ln
Pt

Pt−1
= pt − pt−1, (1.6)

where pt = ln(Pt ). Continuously compounded returns rt enjoy some advantages over
the simple net returns Rt . First, consider multiperiod returns. We have

rt [k ] = ln(1 + Rt [k ]) = ln[(1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1)]

= ln(1 + Rt ) + ln(1 + Rt−1) + · · · + ln(1 + Rt−k+1)

= rt + rt−1 + · · · + rt−k+1.

Thus, the continuously compounded multiperiod return is simply the sum of contin-
uously compounded one-period returns involved. Second, statistical properties of log
returns are more tractable.

To demonstrate, we again consider the daily closing prices of Apple stock of
Table 1.1. The daily log return from December 8 to December 9 is rt = log(393.62) −
log(390.66) ≈ 0.75% and the weekly log return from December 2 to December 9 is
rt [5] = log(393.62) − log(389.70) ≈ 1.00%. One can easily verify that the weekly
log return is the sum of the five daily log returns involved.

Portfolio Return. The simple net return of a portfolio consisting of N assets is
a weighted average of the simple net returns of the assets involved, where the weight
on each asset is the percentage of the portfolio’s value invested in that asset. Let p
be a portfolio that places weight wi on asset i . Then, the simple return of p at time t
is Rp,t = ∑N

i=1 wi Rit , where Rit is the simple return of asset i .
The continuously compounded returns of a portfolio, however, do not have the

above convenient property. If the simple returns Rit are all small in magnitude, then
we have rp,t ≈ ∑N

i=1 wi rit , where rp,t is the continuously compounded return of the
portfolio at time t . This approximation is often used to study portfolio returns.
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Dividend Payment. If an asset pays dividends periodically, we must modify
the definitions of asset returns. Let Dt be the dividend payment of an asset between
dates t − 1 and t , and Pt be the price of the asset at the end of period t . Thus, dividend
is not included in Pt . Then, the simple net return and continuously compounded return
at time t become

Rt = Pt + Dt

Pt−1
− 1, rt = ln(Pt + Dt ) − ln(Pt−1).

Excess Return. Excess return of an asset at time t is the difference between
the asset’s return and the return on some reference asset. The reference asset is often
taken to be riskless such as a short-term U.S. Treasury bill return. The simple excess
return and log excess return of an asset are then defined as

Zt = Rt − R0t , zt = rt − r0t , (1.7)

where R0t and r0t are the simple and log returns of the reference asset, respectively.
In the finance literature, the excess return is thought of as the payoff on an arbitrage
portfolio that goes long in an asset and short in the reference asset with no net initial
investment.

Remark. A long financial position means owning the asset. A short position involves
selling an asset one does not own. This is accomplished by borrowing the asset from
an investor who has purchased it. At some subsequent date, the short seller is obligated
to buy exactly the same number of shares borrowed to pay back the lender. Because
the repayment requires equal shares rather than equal dollars, the short seller benefits
from a decline in the price of the asset. If cash dividends are paid on the asset while
a short position is maintained, these are paid to the buyer of the short sale. The short
seller must also compensate the lender by matching the cash dividends from his own
resources. In other words, the short seller is also obligated to pay cash dividends on
the borrowed asset to the lender. �

Summary of Relationship. The relationships between simple return Rt and
continuously compounded (or log) return rt are

rt = ln(1 + Rt ), Rt = ert − 1.

If the returns Rt and rt are in percentages, then

rt = 100 ln

(
1 + Rt

100

)
, Rt = 100

(
ert /100 − 1

)
.

Temporal aggregation of the returns produces

1 + Rt [k ] = (1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1),
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Figure 1.1. Time plots of daily returns of IBM stock from January 2, 2001 to December 31,

2010: Panels (a) and (b) show simple and log returns, respectively.

rt [k ] = rt + rt−1 + · · · + rt−k+1.

If the continuously compounded interest rate is r per annum, then the relationship
between present and future values of an asset is

A = C exp(r × n), C = A exp(−r × n).

Example 1.1. If the monthly log return of an asset is 4.46%, then the corresponding
monthly simple return is 100[exp(4.46/100) − 1] = 4.56%. Also, if the monthly log
returns of the asset within a quarter are 4.46%, −7.34% , and 10.77%, respectively,
then the quarterly log return of the asset is (4.46 − 7.34 + 10.77)% = 7.89%. �

Figure 1.1 shows the time plots of daily simple and log returns of IBM stock
from January 2, 2001 to December 31, 2010. There are 2515 observations. From the
plots, the behavior of log returns is similar to that of the simple returns. As a matter
of fact, the correlation coefficient between the simple and log returns is 0.9997. This
is understandable because, when x is close to zero, log(1 + x) ≈ x and daily simple
returns of IBM stock are small in the sampling period.

1.2 BOND YIELDS AND PRICES

Bonds are a financial instrument that will pay the face value (or par value) to its
holder at the time of maturity. Some bonds also pay interest periodically referring to
as coupon payment . Zero-coupon bonds do not pay periodic interest. Bond yield is
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the return an investor will receive by holding a bond to maturity. In finance, several
types of bond yield are used. The common ones are the current yield and yield to
maturity (YTM).

Current Yield. The current yield denotes the percentage return that the annual
coupon payment provides the investor. Mathematically, we have

Current yield = Annual interest paid in dollars

Market price of the bond
× 100%.

For example, if an investor paid $90 for a bond with face value of $100, also known
as par value, and the bond paid a coupon rate of 5% per annum, then the current
yield of the bond is ct = (0.05 × 100)/90 × 100% = 5.56%. We use the subscript t
to signify that the yield is typically time dependent. From the definition, current yield
does not include any capital gains or losses of the investment. For zero-coupon bonds,
the yield is calculated as follows:

Current yield =
(

Face value

Purchase price

)1/k

− 1,

where k denotes time to maturity in years. For instance, if an investor purchased a
zero-coupon bond with face value $100 for $90 and the bond will mature in 2 years,
then the yield is ct = (100/90)1/2 − 1 = 5.41%.

Yield to Maturity. The current yield does not consider the time value of money,
because it does not consider the present value of the coupon payments the investor
will receive in the future. Therefore, a more commonly used measurement of bond
investment is the YTM . The calculation of YTM, however, is more complex. Simply
put, YTM is the yield obtained by equating the bond price to the present value of
all future payments. Suppose that the bond holder will receive k payments between
purchase and maturity. Let y and P be the YTM and price of the bond, respectively.
Then,

P = C1

1 + y
+ C2

(1 + y)2
+ · · · + Ck + F

(1 + y)k
,

where F denotes the face value and Ci is the i th cash flow of coupon payment.
Suppose that the coupon rate is α per annum, the number of payments is m per year,
and the time to maturity is n years. In this case, cash flow of coupon payment is
Fα/m , and the number of payments is k = mn . The bond price and YTM can be
formulated as

P = αF

m

[
1

(1 + y)
+ 1

(1 + y)2
+ · · · + 1

(1 + y)k

]
+ F

(1 + y)k

= αF

my

[
1 − 1

(1 + y)k

]
+ F

(1 + y)k
.
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The table below gives some results between bond price and YTM assuming that
F = $100, coupon rate is 5% per annum payable semiannually, and time to maturity
is 3 years.

Yield Semiannual Bond
to Maturity (%) Rate (%) Price ($)

6 3.0 97.29
7 3.5 94.67
8 4.0 92.14
9 4.5 89.68
10 5.0 87.31

From the table, we see that as the YTM increases the bond price decreases. In other
words, YTM is inversely proportional to the bond price. In practice, we observed bond
price so that YTM must be calculated. The solution is not easy to find in general, but
calibration can be used to obtain an accurate approximation. As an example, suppose
that one paid $94 to purchase the bond shown in the prior table. From which, we see
that the YTM must be in the interval [7,8]%. With trial and error, we have

Yield Semiannual Bond
to Maturity (%) Rate (%) Price ($)

7.1 3.55 94.41
7.2 3.6 94.16
7.3 3.65 93.90
7.25 3.625 94.03
7.26 3.63 94.00

Therefore, the YTM is approximately 7.26% per annum for the investor. Many finan-
cial institutions provide online programs that calculate bond YTM and price, for
example, Fidelity Investments.

U.S. Government Bonds. The U.S. Government issues various bonds to
finance its debts. These bonds include Treasury bills, Treasury notes, and Treasury
bonds. A simple description of these bonds is given below.

• Treasury bills (T-Bills) mature in one year or less. They do not pay interest
prior to maturity and are sold at a discount of the face value (or par value) to
create a positive YTM. The commonly used maturities are 28 days (1 month),
91 days (3 months), 182 days (6 months), and 364 days (1 year). The minimum
purchase is $100. The discount yield of T-Bills is calculated via

Discount yield (%) = F − P

F
× 360

Days till maturity
× 100(%),
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where F and P denote the face value and purchase price, respectively. The
U.S. Treasury Department announces the amounts of offering for 13- and 26-
week bills each Thursday for auction on the following Monday and settlement
on Thursday. Offering amount for 4-week bills are announced on Monday for
auction the next day and settlement on Thursday. Offering amounts for 52-week
bills are announced every fourth Thursday for auction the next Tuesday and
settlement on Thursday.

• Treasury notes (T-Notes) mature in 1–10 years. They have a coupon payment
every 6 months and face value of $1000. These notes are quoted on the sec-
ondary market at percentage of face value in thirty-seconds of a point. For
example, a quote 95 : 08 on a note indicates that it is trading at a discount
$(95 + 8/32) × 1000 = $952.5. The 10-year Treasury note has become the
security most frequently quoted when discussing the U.S. government bond
market; see the Chicago Board Options Exchange (CBOE) 10-year Notes of
the next section. Figures 1.5 and 1.7 show, respectively, the time plots of the
daily yield and its return of the 10-year T-Notes.

• Treasury bonds (T-Bonds) have longer maturities, ranging from 20 to 30 years.
They have a coupon payment every 6 months and are commonly issued with
maturities 30 years. The 30-year bonds were suspended for a 4-year and 6-
month period starting October 31, 2001, but they were reintroduced in February
2006 and are now issued quarterly.

1.3 IMPLIED VOLATILITY

Stock options are financial contracts. A call option on Stock A gives its holder the
right, but not obligation, to buy certain shares of Stock A at a prespecified price within
a given period of time. A put option, on the other hand, gives its holder the right,
but not obligation, to sell certain shares of the stock at a prespecified price within a
given period of time. The prespecified price is called the strike price and the time
period is referred to as time to maturity . In the United States, a stock option typically
involves 100 shares of the underlying stock. The options are traded at the options
markets such as CBOE. There are many types of options. The well-known ones are
the European options, which can only be exercised at the time of maturity, and the
American options, which can be exercised any time before maturity. See Hull (2011)
for further details. If an option would result in a positive cash flow to its holder if
it were exercised immediately, we say that the option is in-the-money . If an option
would result in a negative cash flow to its holder if it were exercised immediately,
we say that the option is out-of-the-money . Finally, if an option would result in zero
cash flow to its holder if it were exercised immediately, we say that the option is
at-the-money .

The price of an option depends on many factors such as strike price, risk-free inter-
est rate, and the current price and volatility of the stock. See, for instance, the famous
Black–Scholes formula. This closed-form solution was derived under the assumption
that the stock price follows a geometric Brownian motion. For the purpose of this
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chapter, it suffices to say that the only factor in the Black–Scholes formula that is not
directly observable is the volatility of the stock. By volatility, we mean the conditional
standard deviation of the stock price. In practice, we can use the observed price of an
option and the Black–Scholes formula to back out the value of the stock volatility.
This volatility is referred to as the implied volatility . Similar to the YTM of bonds,
calibration is often used to obtain the implied volatility or an approximation of it.

The most well-known implied volatility is the volatility index (VIX) of CBOE.
The index was originally designed in 1993 to measure the market’s expectation of
30-day volatility implied by at-the-money S&P 100 index option prices. However, the
index was updated by CBOE and Goldman Sachs in 2003 to reflect a new measure
of expected volatility. It is now based on the S&P 500 index (SPX) and estimates
expected volatility by averaging the weighted prices of SPX puts and calls over a
wide range of strike prices. See CBOE VIX white paper for further information. This
new VIX is often regarded as the market fear factor and has played an important role
in the financial markets. As a matter of fact, VIX futures and options are now traded
on CBOE.

Figure 1.2 shows the time plot of the updated VIX index from January 2, 2004
to November 21, 2011 for 1988 observations. From the plot, the financial market was
very volatile in late 2008 and in the beginning of 2009. The volatility was also high
in 2011. We shall analyze the VIX index in later chapters. Also, see Chapter 4 for
more information on asset volatility.
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Figure 1.2. Time plot of the VIX index of Chicago Board Options Exchange from January 2,

2004 to November 21, 2011.
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1.4 R PACKAGES AND DEMONSTRATIONS

Before studying some real examples of financial data, we briefly introduce the R
program to be used extensively in the book. The package and commands used to
perform the analysis will be given when needed. Our goal is to make the empirical
analysis as easy as possible so that readers can reproduce the results shown in the book.

R is a free software available from http://www.r-project.org. It runs on many
operating systems, including Linux, MacOS X, and Windows. One can click CRAN
on its web page to select a nearby CRAN Mirror to download and install the software
and selected packages. The simplest way to install the program is to follow the online
instructions and to use the default options. Because R is an open-source software, it
contains hundreds of packages developed by researchers around the world for various
statistical analyses. For financial time series analysis, the Rmetrics of Dr. Diethelm
Wuertz and his associates has many useful packages, including fBasics, fGarch, and
fPortfolio. We use many functions of these packages in the book. We also use some
other packages that are powerful and easy to use in R, for example, the evir package
for extreme value analysis in R. Further information concerning installing R and the
commands used can be found either on the web page of the book or on the author’s
teaching web page. There exist several introductory books for R; see, for instance,
Adler (2010) and Crawley (2007). The R commands are case sensitive and must be
followed exactly.

1.4.1 Installation of R Packages

Using default options in R installation creates an icon on the desktop of a computer.
One can start the R program simply by double clicking the R icon. For Windows, a
RGui window will appear with command menu and the R Console. To install pack-
ages, one can click on the command Packages to select Install packages.
A pop-up window appears asking users to select an R mirror (similar to R installa-
tion mentioned before). With a selected mirror, another pop-up window appears that
contains all available packages. One can click on the desired packages for installation.

With packages installed, one can load them into R by clicking on the command
Packages followed by clicking Load packages. A pop-up window appears that
contains all installed packages for users to choose. An alternative approach to load
a package is to use the command library. See the demonstration in the following
discussion.

1.4.2 The Quantmod Package

To begin with, we consider a useful R package for downloading financial data directly
from some open sources, including Yahoo Finance, Google Finance, and the Federal
Reserve Economic Data (FRED) of Federal Reserve Bank of St. Louis. The package
is quantmod by Jeffry A. Ryan. It is highly recommended that one installs it. The
package requires three additional packages that need to be installed as well. They are
TTR, xts, and zoo.
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Once installed, the quantmod package allows users, with internet connection, to
use tick symbols to access daily stock data from Yahoo and Google Finance and to use
series name to access over 1000 economic and financial time series from FRED. The
command is getSymbols. The package also has some nice functions, for example,
obtaining time series plots of closing price and trading volume. The command is
chartSeries. The default option of these two commands is sufficient for basic
analysis of financial time series. One can use subcommands to further enhance the
capabilities of the package such as specifying the time span of interest in get-
Symbols. Interested readers may consult the document associated with the package
for description of the commands available. Here, we provide a simple demonstra-
tion. Figure 1.3 shows the time plots of daily closing price and trading volume of
Apple stock from January 3, 2007 to December 2, 2011. The plot also shows the
price and volume of the last observation. The subcommand theme = "white" of
chartSeries is used to set the background of the time plot. The default is black.
Figure 1.4 shows the time plot of monthly U.S. unemployment rates from January
1948 to November 2011. Figure 1.5 shows the time plot of daily interest rate of 10-
year treasures notes from January 3, 2007 to December 2, 2011. These are the interest
rates from the CBOE obtained from Yahoo Finance. As there is no volume, the sub-
command TA = NULL is used to omit the time plot of volume in chartSeries.
The commands head and tail show, respectively, the first and the last six rows of
the data.

R Demonstration with quantmod package Output edited. > denotes R
prompt and explanation starts with %.

> library(quantmod) % Load the package

> getSymbols("AAPL") % Download daily prices of Apple stock from Yahoo

[1] "AAPL" % I ran R on 2011-12-03 so that the last day was 12-02.

> dim(AAPL) % (dimension): See the size of the downloaded data.

[1] 1241 6

> head(AAPL) % See the first 6 rows of the data

Open High Low Close Volume Adjusted

2007-01-03 86.29 86.58 81.90 83.80 44225700 83.80

2007-01-04 84.05 85.95 83.82 85.66 30259300 85.66

....

2007-01-10 94.75 97.80 93.45 97.00 105460000 97.00

> tail(AAPL) % See the last 6 rows of the data

Open High Low Close Volume Adjusted

2011-11-25 368.42 371.15 363.32 363.57 9098600 363.57

.....

2011-12-01 382.54 389.00 380.75 387.93 13709400 387.93

2011-12-02 389.83 393.63 388.58 389.70 13537700 389.70

> chartSeries(AAPL,theme="white") % Plot the daily price and volume

% The subcommand theme is used to obtain white background of the plot.

> chartSeries(AAPL)%Not shown giving the same plot with black background.

% The next command specifies the data span of interest

> getSymbols("AAPL",from="2005-01-02", to="2010-12-31")
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Figure 1.3. Time plots of daily closing price and trading volume of Apple stock from January

3, 2007 to December 2, 2011.
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Figure 1.5. Time plot of Chicago Board Options Exchange interest rates of 10-year Treasury

notes from January 3, 2007 to December 2, 2011.

[1] "AAPL"
> head(AAPL)

AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume Adjusted
2005-01-03 64.78 65.11 62.60 63.29 24714000 31.65
2005-01-04 63.79 65.47 62.97 63.94 39171800 31.97
......
> getSymbols("UNRATE",src="FRED")%Download unemployment rates from FRED.
[1] "UNRATE"
> head(UNRATE)

UNRATE
1948-01-01 3.4
1948-02-01 3.8
......
1948-06-01 3.6
> chartSeries(UNRATE,theme="white") % Plot monthly unemployment rates
% The subcommand "src" is used to specify the data source.
% The default is Yahoo.
> getSymbols("INTC",src="google") % Download data from Google.
[1] "INTC"
> head(INTC)

INTC.Open INTC.High INTC.Low INTC.Close INTC.Volume
2007-01-03 20.45 20.88 20.14 20.35 68665100
2007-01-04 20.63 21.33 20.56 21.17 87795400
.....
2007-01-10 21.09 21.62 21.03 21.52 75522200

> getSymbols(" ˆ TNX") % Download CBOE 10-year Treasures Notes
[1] "TNX"
> head(TNX)

TNX.Open TNX.High TNX.Low TNX.Close Volume Adjusted
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2007-01-03 4.66 4.69 4.64 4.66 0 4.66
2007-01-04 4.66 4.66 4.60 4.62 0 4.62
.....
2007-01-10 4.67 4.70 4.66 4.68 0 4.68
> chartSeries(TNX,theme="white",TA=NULL) % Obtain plot without volume.

1.4.3 Some Basic R Commands

After starting R, the first thing to do is to set the working directory. By working
directory, we mean the computer directory where data sets reside and output will be
stored. This can be done in two ways. The first method is to click on the command
File. A pop-up window appears that allows one to select the desired directory. The
second method is to type in the desired directory in the R Console using the command
setwd, which stands for set working directory. See the demonstration in the following
discussion.

R is an object-oriented program. It handles many types of object. For the purposes
of the book, we do not need to study details of an object in R. Explanations will be
given when needed. It suffices now to say that R allows one to assign values to
variables and refer to them by name. The assignment operator is <−, but = can
also be used. For instance, x<− 10 assigns the value 10 to the variable “x.” Here, R
treats “x” as a sequence of real numbers with the first element being 10. There are
several ways to load data into the R working space, depending on the data format.
For simple text data, the command is read.table. For .csv files, the command
is read.csv. The data file is specified in either a single or double quotes; see the R
demonstration. R treats the data as an object and refer to them by the assigned name.
For both loading commands, R stores the data in a matrix framework. As such, one
can use the command dim (i.e., dimension) to see the size of the data. Finally, the
basic operations in R are similar to those we commonly use and the command to exit
R is q().

R Demonstration

> setwd("C:/Users/rst/book/introTS/data") % Set my working directory
> library(fBasics) % Load package
> x <- 10 % Assign value, here "x" is a variable.
> x % See the value of x.
[1] 10 % Here [1] signifies the first element.
> 1 + 2 % Basic operation: addition
[1] 3
> 10/2 % Basic operation: division
[1] 5
% Use * and ˆ for multiplication and power, respectively.
% Use log for the natural logarithm.
> da=read.table(‘d-ibm-0110.txt’,header=T) % Load text data with names.
> head(da) % See the first 6 rows

date return
1 20010102 -0.002206
2 20010103 0.115696
....
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6 20010109 -0.010688
> dim(da) % Dimension of the data object "da".
[1] 2515 2
> da <- read.csv("d-vix0411.csv",header=T) % Load csv data with names.
> head(da) % See the first 6 rows

Date VIX.Open VIX.High VIX.Low VIX.Close
1 1/2/2004 17.96 18.68 17.54 18.22
2 1/5/2004 18.45 18.49 17.44 17.49
....

6 1/9/2004 16.15 16.88 15.57 16.75

1.5 EXAMPLES OF FINANCIAL DATA

In this section, we examine some of the return series in finance. Figure 1.6 shows the
time plot of daily log returns of Apple stock from January 4, 2007 to December 2,
2011. As defined before, daily log returns are simply the change series of log prices.
In R, a change series can easily be obtained by taking the difference of the log prices.
Specifically, rt = ln(P1) − ln(Pt−1), where Pt is the stock price at time t . Note that in
the demonstration, I used adjusted daily price to compute log returns because adjusted
price takes into consideration the stock splits, if any, during the sample period. From
the plot, we see that (i) there exist some large outlying observations and (ii) the returns
were volatile in certain periods but stable in others. The latter characteristic is referred
to as volatility clustering in asset returns. The former, on the other hand, are indicative
that the returns have heavy tails.

Figure 1.7 shows the time plot of daily changes in YTM of the 10-year Treasury
notes also from January 4, 2007 to December 2, 2011. The changes in YTM exhibit
similar characteristics as those of daily returns of Apple stock. Figure 1.8 provides the
time plot of daily log returns of the Dollar–Euro exchange rate. Again, the log returns
of exchange rates have the same features as those of the daily log returns of stock.
The daily Dollar–Euro exchange rate is given in Figure 1.9. The exchange rates are
downloaded from the database FRED.

R Demonstration

> library(quantmod)
> getSymbols("AAPL",from="2007-01-03",to="2011-12-02") %Specify period
[1] "AAPL"
> AAPL.rtn=diff(log(AAPL$AAPL.Adjusted)) % Compute log returns
> chartSeries(AAPL.rtn,theme="white")
> getSymbols(" ˆ TNX",from="2007-01-03",to="2011-12-02")
[1] "TNX"

> TNX.rtn=diff(TNX$TNX.Adjusted) % Compute changes
> chartSeries(TNX.rtn,theme="white")
> getSymbols("DEXUSEU",src="FRED") % Obtain exchange rates from FRED
[1] "DEXUSEU"
> head(DEXUSEU)

DEXUSEU
1999-01-04 1.1812
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Figure 1.6. Time plot of daily log returns of Apple stock from January 3, 2007 to December 2,
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1999-01-05 1.1760
....
1999-01-11 1.1534
> tail(DEXUSEU)

DEXUSEU
2011-12-09 1.3368
....
2011-12-16 1.3025
> USEU.rtn=diff(log(DEXUSEU$DEXUSEU))
> chartSeries(DEXUSEU,theme="white")
> chartSeries(USEU.rtn,theme="white")

1.6 DISTRIBUTIONAL PROPERTIES OF RETURNS

To gain a better understanding on asset returns, we begin with their distributional
properties. The objective here is to study the behavior of the returns across assets and
over time. Consider a collection of N assets held for T time periods, say, t = 1, . . . , T .
For each asset i , let rit be its log return at time t . The log returns under study are
{rit ; i = 1, . . . , N ; t = 1, . . . , T }. One can also consider the simple returns {Rit ; i =
1, . . . , N ; t = 1, . . . , T } and the log excess returns {zit ; i = 1, . . . , N ; t = 1, . . . , T }.

1.6.1 Review of Statistical Distributions and Their Moments

We briefly review some basic properties of statistical distributions and the moment
equations of a random variable. Let Rk be the k -dimensional Euclidean space. A point
in Rk is denoted by x ∈ Rk . Consider two random vectors X = (X1, . . . , Xk )

′ and
Y = (Y1, . . . , Yq )′. Let P(X ∈ A, Y ∈ B) be the probability that X is in the subspace
A ⊂ Rk and Y is in the subspace B ⊂ Rq . For most of the cases considered in this
book, both random vectors are assumed to be continuous.

Joint Distribution. The function

FX ,Y (x , y; θ) = P(X ≤ x , Y ≤ y; θ),

where x ∈ Rp , y ∈ Rq , and the inequality “≤” is a component-by-component operation
and is a joint distribution function of X and Y with parameter θ . Behavior of X and
Y is characterized by FX ,Y (x , y; θ). For instance, the linear dependence between X
and Y is shown by the covariance of the joint distribution. If the joint probability
density function fx ,y(x , y; θ) of X and Y exists, then

FX ,Y (x , y; θ) =
∫ x

−∞

∫ y

−∞
fx ,y (w, z ; θ)dzdw.

In this case, X and Y are continuous random vectors.
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Marginal Distribution. The marginal distribution of X is given by

FX (x; θ) = FX ,Y (x , ∞, · · · , ∞; θ).

Thus, the marginal distribution of X is obtained by integrating out Y . A similar
definition applies to the marginal distribution of Y .

If k = 1, X is a scalar random variable and the distribution function becomes

FX (x) = P(X ≤ x; θ),

which is known as the cumulative distribution function (CDF) of X . The CDF of
a random variable is nondecreasing (i.e., FX (x1) ≤ FX (x2) if x1 ≤ x2) and satisfies
FX (−∞) = 0 and FX (∞) = 1. For a given probability p, the smallest real number
xp such that p ≤ FX (xp) is called the pth quantile of the random variable X . More
specifically,

xp = inf
x

{x |p ≤ FX (x)}.

We use the CDF to compute the p-value of a test statistic in the book.

Conditional Distribution. The conditional distribution of X given Y ≤ y is
given by

FX |Y ≤y(x; θ) = P(X ≤ x , Y ≤ y; θ)

P(Y ≤ y; θ)
.

If the probability density functions involved exist, then the conditional density of X
given Y = y is

fx |y(x; θ) = fx ,y(x , y; θ)

fy(y; θ)
, (1.8)

where the marginal density function fy (y; θ) is obtained by

fy (y; θ) =
∫ ∞

−∞
fx ,y(x , y; θ)dx .

From Equation (1.8), the relation among joint, marginal, and conditional distribu-
tions is

fx ,y(x , y; θ) = fx |y (x ; θ) × fy (y; θ). (1.9)

This identity is used extensively in time series analysis (e.g., in maximum likeli-
hood estimation). Finally, X and Y are independent random vectors if and only if
fx |y (x; θ) = fx (x; θ). In this case, fx ,y(x , y; θ) = fx (x; θ)fy (y; θ).
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Moments of a Random Variable. The �th moment of a continuous random
variable X is defined as

m ′
� = E (X �) =

∫ ∞

−∞
x �f (x)dx ,

where E stands for expectation and f (x) is the probability density function of X . The
first moment is called the mean or expectation of X . It measures the central location of
the distribution. We denote the mean of X by μx . For an asset, an interesting question
is whether the mean of its return is zero. In other words, we often consider the
hypothesis testing H0 : μx = 0 versus Ha : μ �= 0 or H0 : μx ≤ 0 versus Ha : μx > 0.

The �th central moment of X is defined as

m� = E [(X − μx )
�] =

∫ ∞

−∞
(x − μx )

�f (x)dx

provided that the integral exists. The second central moment, denoted by σ 2
x , measures

the variability of X and is called the variance of X . The positive square root, σx ,
of variance is the standard deviation of X . For asset returns, variance (or standard
deviation) is a measure of uncertainty and, hence, is often used as a risk measure. The
first two moments of a random variable uniquely determine a normal distribution. For
other distributions, higher order moments are also of interest.

The third central moment measures the symmetry of X with respect to its mean,
whereas the fourth central moment measures the tail behavior of X . In statistics,
skewness and kurtosis , which are normalized third and fourth central moments of X ,
are often used to summarize the extent of asymmetry and tail thickness. Specifically,
the skewness and kurtosis of X are defined as

S (x) = E

[
(X − μx )

3

σ 3
x

]
, K (x) = E

[
(X − μx )

4

σ 4
x

]
.

The quantity K (x) − 3 is called the excess kurtosis because K (x) = 3 for a normal
distribution. Thus, the excess kurtosis of a normal random variable is zero. A dis-
tribution with positive excess kurtosis is said to have heavy tails, implying that the
distribution puts more mass on the tails of its support than a normal distribution does.
In practice, this means that a random sample from such a distribution tends to contain
more extreme values. Such a distribution is said to be leptokurtic. On the other hand,
a distribution with negative excess kurtosis has short tails (e.g., a uniform distribution
over a finite interval). Such a distribution is said to be platykurtic. In finance, the
first fourth moments of a random variable are used to describe the behavior of asset
returns. This does not imply that higher order moments are not important; they are
much harder to study.

In application, moments of a random variable can be estimated by their sample
counterparts. Let {x1, . . . , xT } be a random sample of X with T observations. The
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sample mean is

μ̂x = 1

T

T∑
t=1

xt , (1.10)

the sample variance is

σ̂ 2
x = 1

T − 1

T∑
t=1

(xt − μ̂x )
2, (1.11)

the sample skewness is

Ŝ (x) = 1

(T − 1)σ̂ 3
x

T∑
t=1

(xt − μ̂x )
3, (1.12)

and the sample kurtosis is

K̂ (x) = 1

(T − 1)σ̂ 4
x

T∑
t=1

(xt − μ̂x )
4. (1.13)

Under rather weak conditions, the sample mean μ̂x is a consistent estimate of
μx , meaning that μ̂x converges to μx as T → ∞. More specifically, we have μ̂x ∼
N (μx , σ 2

x /T ) for a sufficiently large T . This result is often used to test any hypothesis
about μx . For instance, consider H0 : μx = 0 versus Ha : μx �= 0. The test statistic is

t =
√

T μ̂x

σ̂x
,

which follows a Student’s-t distribution with T − 1 degrees of freedom. For a suf-
ficiently large T , the test statistic approaches a standard normal distribution. The
decision rule is then to reject H0 at the 100α% level if |t | > Z1−α/2, where Z1−α/2 is
the (1 − α/2)th quantile of the standard normal distribution. Most statistical packages
now provide p-value for each test statistic. The decision rule is then to reject H0 at
the 100α% level if the p-value is less than α.

If X is a normal random variable, then Ŝ (x) and K̂ (x) − 3 are distributed asymp-
totically as normal with zero mean and variances 6/T and 24/T , respectively; see
Snedecor and Cochran (1980, p. 78). These asymptotic properties can be used to test
the normality of asset returns. Given an asset return series {r1, . . . , rT }, to test the
skewness of the returns, we consider the null hypothesis Ho : S (r) = 0 versus the
alternative hypothesis Ha : S (r) �= 0. The t-ratio statistic of the sample skewness in
Equation (1.12) is

t = Ŝ (r)√
6/T

.
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The decision rule is to reject the null hypothesis at the 100α% significance level, if
|t | > Z1−α/2.

Similarly, one can test the excess kurtosis of the return series using the hypotheses
Ho : K (r) − 3 = 0 versus Ha : K (r) − 3 �= 0. The test statistic is

t = K̂ (r) − 3√
24/T

,

which is asymptotically a standard normal random variable. The decision rule is to
reject Ho if and only if the p-value of the test statistic is less than the significance
level α. Jarque and Bera (1987) combine the two prior tests and use the test statistic

JB = Ŝ 2(r)

6/T
+ (K̂ (r) − 3)2

24/T
,

which is asymptotically distributed as a chi-squared random variable with 2 degrees
of freedom, to test for the normality of rt . One rejects Ho of normality if the p-value
of the JB statistic is less than the significance level.

Example 1.2. Consider the daily simple returns of the 3M stock from January 2,
2001 to September 30, 2011. The data are obtained from the Center for Research of
Security Prices (CRSP), University of Chicago. Figure 1.10 shows the time plot of the
data. Here, we use the command basicStats of fBasics in Rmetrics to obtain
summary statistics of the returns and to perform some basic hypothesis testing. From
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Figure 1.10. Time plot of daily simple returns of 3M stock from January 2, 2001 to September

30, 2011.
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the output, we see that there are 2704 data points, the sample mean of the simple
return is 0.0278%, and the sample standard error is 0.0155. The sample skewness
and excess kurtosis are 0.0279 and 4.631, respectively. Next, consider the hypothesis
H0 : μ = 0 versus Ha : μ �= 0, where μ denotes the mean of the daily 3M simple
return. The test statistic is

t = 0.000278

0.0155/
√

2704
= 0.933,

with p-value 0.35, which is greater than 0.05. Thus, the null hypothesis of zero mean
cannot be rejected at the 5% level. For the skewness, the hypothesis is H0 : S = 0
versus Ha : S �= 0. The test statistic is

t = 0.0279√
6/2704

= 0.59,

with p-value 0.55. Again, one cannot reject zero skewness at the 5% level. For the
excess kurtosis, the hypothesis is H0 : K − 3 = 0 versus Ha : k − 3 �= 0. For the 3M
simple returns, the test statistic is

t = 4.631√
24/2704

= 49.15,

which is large compared with a standard normal random variable. Thus, the p-value
is close to zero and one reject the null hypothesis of K = 3. In other words, the daily
simple returns of 3M stock have heavy tails. Finally, the Jarque–Bera test statistic
is 2422, which is very large compared with a chi-square distribution with 2 degrees
of freedom. Therefore, the normality assumption for the daily 3M simple returns is
rejected. This is not surprising as the returns have heavy tails. �

R Demonstration Output edited.

> library(fBasics) % Load package
> da=read.table("d-mmm-0111.txt",header=T) % Load data

> head(da) % Show the first 6 rows of data
date rtn

1 20010102 -0.010892
....

6 20010109 -0.015727
> mmm=da[,2] % Obtain 3m simple returns
> basicStats(mmm) %Compute summary statistics

mmm
nobs 2704.000000 % Sample size
NAs 0.000000 % No of missing values
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Minimum -0.089569 % Minimum
Maximum 0.098784 % Maximum
1. Quartile -0.007161 % 25th percentile
3. Quartile 0.007987 % 75th percentile
Mean 0.000278 % Sample mean
Median 0.000350 % Sample median
Sum 0.751082 % Sample total
SE Mean 0.000298 % Standard error of Sample mean

% = sqrt(sample variance/sample size)
LCL Mean -0.000306 % Lower bound of 95% C.I.
UCL Mean 0.000862 % Upper bound of 95% C.I.
Variance 0.000240 % Sample variance
Stdev 0.015488 % Sample standard error
Skewness 0.027949 % Sample skewness
Kurtosis 4.630925 & % Sample excess kurtosis

% Commands for individual moments
> mean(mmm)
[1] 0.000277767
> var(mmm)
[1] 0.0002398835
> stdev(mmm) % standard deviation
[1] 0.01548817
% Simple tests
> t.test(mmm) % Testing mean return = 0

One Sample t-test
data: mmm
t = 0.9326, df = 2703, p-value = 0.3511
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.0003062688 0.0008618028 % See prior summary statistics.

% p-value > 0.05; one cannot reject the null hypothesis.

> s3=skewness(mmm)
> T=length(mmm) % Sample size
> T
[1] 2704
> t3=s3/sqrt(6/T) % Skewness test
> t3
[1] 0.593333
> pp=2*(1-pnorm(t3)) % Compute p-value
> pp
[1] 0.5529583 % Cannot reject the null of symmetry.
> s4=kurtosis(mmm)
> t4=s4/sqrt(24/T) % Kurtosis test
> t4
[1] 49.15475 % Value is huge; reject the null. Has heavy tails.

> normalTest(mmm,method=‘jb’) % JB-test
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Title: Jarque - Bera Normalality Test
Test Results:

STATISTIC: X-squared: 2422.4384
P VALUE: Asymptotic p Value: < 2.2e-16 % Reject normality

1.7 VISUALIZATION OF FINANCIAL DATA

Graphs are useful tools in analyzing financial data. Besides the time series plot shown
before, we discuss some additional plots to display financial data in this section. To
gain a better visualization of the distribution of asset returns, we can exam either the
histogram or empirical density function of the data. Consider, for instance, the daily
simple returns of 3M stock from January 2, 2001 to September 30, 2011 for 2704
observations. The summary statistics of the data are given before. Figure 1.11 shows
a histogram of the data. This is obtained by dividing the data range into 30 bins.
The plot confirms that the returns appear to be symmetric with respect to its mean
zero. The solid line of Figure 1.12 shows the empirical density function of the 3M
returns. This is obtained by a nonparametric smoothing method. The empirical density
function can be regarded as a refined version of the histogram. The dashed line of
Figure 1.12 shows the density function of a normal distribution that has the same mean
and standard deviation as those of the 3M data. The plot provides a visual inspection
of the normality assumption for the daily 3M simple returns. The empirical density
function has a higher peak and longer tails than the normal density. This phenomenon
is common for daily stock returns. In general, the deviation between the solid and
dashed line indicates that the daily simple returns of 3M stock are not normally
distributed. This, again, is consistent with the result of normality test shown before.

To study the price variability of a stock, we consider the daily open, high, low,
and close prices of the stock. Figure 1.13 shows a time plot of these statistics for
Apple stock from January 3 to June 30, 2011. This plot is referred to as a Bar Chart
in the literature. We use a R script ohlc.R to obtain the plot. This script is a modified
version of that given in Klemelä (2009). In the plot, the vertical bar shows the daily
range of the stock price, the horizontal line points to the left gives the opening price,
and the horizontal line points to the right denotes the closing price. For this graph
to be informative, one cannot show too many days in the plot. Figure 1.14 shows
the daily closing price of Apple stock along with a moving-average price of the past
21 trading days from January 2, 2010 to December 8, 2011. This is referred to as a
moving-average chart . The use of 21 days is arbitrary; it is roughly the number of
trading days in a month. The moving-average chart provides information about stock
price relative to its recent history. In statistics, averaging is a simple way to reduce
the random variability.

Turn to multiple asset returns. Figure 1.15 shows the time plots of monthly log
returns of IBM stock and the S&P composite index from January 1926 to September
2011. These returns are obtained from CRSP. Except for the Great Depression period,
returns of individual stock are in general more volatile than the market index. The
time plots exhibit certain simultaneous drops or jumps between IBM stock and the
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Figure 1.11. Histogram of daily simple returns of 3M stock from January 2, 2001 to September

30, 2011.
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Figure 1.12. Empirical density function of daily simple returns of 3M stock from January
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market returns. Figure 1.16 shows the scatter plot of the two log returns. The plot
also shows a least squares linear regression line between the two returns. From the
plot, it is clear that, as expected, IBM and market returns have a positive relationship.
This linear relationship can be measured by the correlation between the two returns.
In this particular instance, the correlation is 0.64. Alternatively, one can consider the
Market Model

rt = α + βmt + εt ,

where rt and mt are the individual and market return, respectively, and εt is the
error term. The parameters α and β denote the excess return, with respect to the
market, and β coefficient, respectively. For monthly log returns of IBM stock, we have
rt = 0.008 + 0.807mt + εt . These two parameters are significantly different from zero
at the usual 5% level. For more information on Market model, see the capital asset
pricing model (CAPM) of Sharpe (1964).

R Demonstration

> library(fBasics)
> da=read.table("d-mmm-0111.txt",header=T) % Load data
> mmm=da[,2] % Locate 3M simple returns
> hist(mmm,nclass=30) % Histogram
> d1=density(mmm) % Obtain density estimate
> range(mmm) % Range of 3M returns
[1] -0.089569 0.098784
> x=seq(-.1,.1,.001) % Create a sequence of x with increment 0.001.

% The next command creates normal density
> y1=dnorm(x,mean(mmm),stdev(mmm))
> plot(d1$x,d1$y,xlab=‘rtn’,ylab=‘density’,type=‘l’)
> lines(x,y1,lty=2)
% ohlc plot

> library(quantmod)
> getSymbols("AAPL",from="2011-01-03",to="2011-06-30")
> X=AAPL[,1:4] % Locate open, high, low, and close prices
> xx=cbind(as.numeric(X[,1]),as.numeric(X[,2]),as.numeric(X[,3]),

as.numeric(X[,4]))
> source("ohlc.R") % Compile the R script
> ohlc(xx,xl="days",yl="price",title="Apple Stock")
% Moving average plot

> source("ma.R") % Compile R script
> getSymbols("AAPL",from="2010-01-02",to="2011-12-08")
> x1=as.numeric(AAPL$AAPL.Close) % Locate close price
> ma(x1,21)
% Bivariate and Scatter plots

> da=read.table("m-ibmsp-2611.txt",header=T)
> head(da)

data ibm sp
1 19260130 -0.010381 0.022472
.....

6 19260630 0.068493 0.043184
> ibm=log(da$ibm+1) % Transform to log returns
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Figure 1.15. Time pots of monthly log returns of IBM stock and the S&P composite index

from January 1926 to September 2011. (a) The IBM returns.
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index from January 1926 to September 2011. The solid line denotes the least squares fit.
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> sp=log(da$sp+1)
> tdx=c(1:nrow(da))/12+1926 % Create time index
> par(mfcol=c(2,1))
> plot(tdx,ibm,xlab=‘year’,ylab=‘lrtn’,type=‘l’)
> title(main=‘(a) IBM returns’)
> plot(tdx,sp,xlab=‘year’,ylab=‘lrtn’,type=‘l’) % X-axis first.
> title(main=‘(b) SP index’)
> cor(ibm,sp) % Obtain sample correlation
[1] 0.6409642
> m1=lm(ibm∼ sp) % Fit the Market Model (linear model)
> summary(m1)
Call: lm(formula = ibm ∼ sp)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.007768 0.001672 4.645 3.84e-06 ***
sp 0.806685 0.030144 26.761 < 2e-16 ***
---
Residual standard error: 0.05348 on 1027 degrees of freedom
Multiple R-squared: 0.4108, Adjusted R-squared: 0.4103
> plot(sp,ibm,cex=0.8) % Obtain scatter plot
> abline(0.008,.807) % Add the linear regression line

1.8 SOME STATISTICAL DISTRIBUTIONS

Several statistical distributions have been proposed in the literature for the marginal
distributions of asset returns, including normal distribution, lognormal distribution,
stable distribution, and scale mixture of normal distributions. We briefly discuss these
distributions.

1.8.1 Normal Distribution

A traditional assumption made in financial study is that the simple returns {Rit |t =
1, · · · , T } are independently and identically distributed (iid) as normal with fixed mean
and variance. This assumption makes statistical properties of asset returns tractable.
But it encounters several difficulties. First, the lower bound of a simple return is −1.
Yet the normal distribution may assume any value in the real line and, hence, has no
lower bound. Second, if Rit is normally distributed, then the multiperiod simple return
Rit [k ] is not normally distributed because it is a product of one-period returns. Third,
the normality assumption is not supported by many empirical asset returns, which
tend to have a positive excess kurtosis.

1.8.2 Lognormal Distribution

Another commonly used assumption is that the log returns rt of an asset are iid as
normal with mean μ and variance σ 2. The simple returns are then iid lognormal
random variables with mean and variance given by

E (Rt ) = exp

(
μ + σ 2

2

)
− 1, Var(Rt ) = exp

(
2μ + σ 2) [exp

(
σ 2) − 1]. (1.14)
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These two equations are useful in studying asset returns (e.g., in forecasting using
models built for log returns). Alternatively, let m1 and m2 be the mean and variance,
respectively, of the simple return Rt , which is distributed as lognormal. Then, the
mean and variance of the corresponding log return rt are

E (rt ) = ln

⎛
⎜⎜⎝ m1 + 1√

1 + m2

(1 + m1)
2

⎞
⎟⎟⎠ , Var(rt ) = ln

(
1 + m2

(1 + m1)
2

)
.

Because the sum of a finite number of iid normal random variables is normal,
rt [k ] is also normally distributed under the normal assumption for {rt }. In addition,
there is no lower bound for rt , and the lower bound for Rt is satisfied using 1 + Rt =
exp(rt ). However, the lognormal assumption is not consistent with all the properties
of historical stock returns. In particular, many stock returns exhibit a positive excess
kurtosis.

1.8.3 Stable Distribution

The stable distributions are a natural generalization of normal in that they are stable
under addition, which meets the need of continuously compounded returns rt . Further-
more, stable distributions are capable of capturing excess kurtosis shown by historical
stock returns. However, nonnormal stable distributions do not have a finite variance,
which is in conflict with most finance theories. In addition, statistical modeling using
nonnormal stable distributions is difficult. An example of nonnormal stable distribu-
tions is the Cauchy distribution, which is symmetric with respect to its median but
has infinite variance.

1.8.4 Scale Mixture of Normal Distributions

Recent studies of stock returns tend to use scale mixture or finite mixture of normal
distributions. Under the assumption of scale mixture of normal distributions, the log
return rt is normally distributed with mean μ and variance σ 2 [i.e., rt ∼ N (μ, σ 2)].
However, σ 2 is a random variable that follows a positive distribution (e.g., σ−2 follows
a gamma distribution). An example of finite mixture of normal distributions is

rt ∼ (1 − X )N (μ, σ 2
1 ) + XN (μ, σ 2

2 ),

where X is a Bernoulli random variable such that P(X = 1) = α and P(X = 0) =
1 − α with 0 < α < 1, σ 2

1 is small, and σ 2
2 is relatively large. For instance, with

α = 0.05, the finite mixture says that 95% of the returns follow N (μ, σ 2
1 ) and 5%

follow N (μ, σ 2
2 ). The large value of σ 2

2 enables the mixture to put more mass at the
tails of its distribution. The low percentage of returns that are from N (μ, σ 2

2 ) says
that the majority of the returns follow a simple normal distribution. Advantages of
mixtures of normal include that they maintain the tractability of normal, have finite
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Figure 1.17. Comparison of finite mixture, stable, and standard normal density functions.

higher order moments, and can capture the excess kurtosis. Yet it is hard to estimate
the mixture parameters (e.g., the α in the finite mixture case).

Figure 1.17 shows the probability density functions of a finite mixture of normal,
Cauchy, and standard normal random variable. The finite mixture of normal is
(1 − X )N (0, 1) + X × N (0, 16) with X being Bernoulli such that P(X = 1) = 0.05,
and the density function of Cauchy is

f (x) = 1

π(1 + x 2)
, −∞ < x < ∞.

It is seen that the Cauchy distribution has fatter tails than the finite mixture of
normal, which, in turn, has fatter tails than the standard normal.

1.8.5 Multivariate Returns

Let r t = (r1t , . . . , rNt )
′ be the log returns of N assets at time t . The multivariate

analyses are concerned with the joint distribution of {r t }T
t=1. In the presence of serial

dependence, statistical analysis is then focused on the specification of the conditional
distribution function F (r t |r t−1, . . . , r1, θ). In particular, how the conditional expecta-
tion and conditional covariance matrix of r t evolve over time are of special interest
in portfolio selection and risk management.
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The mean vector and covariance matrix of a random vector X = (X1, . . . , Xp) are
defined as

E (x) = μx = [E (X1), . . . , E (Xp)]
′,

Cov(x) = Σx = E [(x − μx )(x − μx )
′],

provided that the expectations involved exist. When the data {x1, . . . , x T } of X are
available, the sample mean and covariance matrix are defined as

μ̂x = 1

T

T∑
t=1

x t , Σ̂x = 1

T − 1

T∑
t=1

(x t − μ̂x )(x t − μ̂x )
′.

These sample statistics are consistent estimates of their theoretical counterparts pro-
vided that the covariance matrix of X exists. In the finance literature, multivariate
normal distribution is often used for the log return r t .

To demonstrate, consider again the monthly log returns of IBM stock and S&P
500 composite index from January 1926 to September 2011 shown in Figure 1.16.
Let r t = (r1t , r2t )

′ with r1t and r2t being the monthly log return of IBM stock and
S&P index, respectively. Then, we have 1029 observations for r t . The sample mean
and covariance matrix of r t are

μ̂ =
[

0.0113
0.0044

]
, Σ̂ =

[
4849 2470
2470 3062

]
× 10−6.

To check the validity of the bivariate normality assumption, we can use statistical
simulation. Specifically, we can generate 1029 data points from a bivariate normal
distribution with mean μ̂ and covariance matrix Σ̂ . In R, this can be done using the
command rmnorm of the package mnormt. Figure 1.18 shows the scatter plot of such
a simulation. By comparing this scatter plot with Figure 1.16, we see that significant
differences exist between the two plots, indicating that the normality assumption is
questionable.

R Demonstration

> da=read.table("m-ibmsp-2611.txt",header=T) % Load data
> dim(da)
[1] 1029 3
> ibm=log(da$ibm+1) % Compute log returns
> sp=log(da$sp+1)
> rt=cbind(ibm,sp) % Obtain bivariate returns
> m1=apply(rt,2,mean) % Obtain sample means
> v1=cov(rt) % Obtain sample covariance matrix
> m1

ibm sp
0.011303024 0.004381644
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Figure 1.18. Scatterplot of 1029 data points simulated from a bivariate normal distribution

based on the sample mean and covariance of monthly log returns of IBM stock and S&P index.

> v1
ibm sp

ibm 0.004849390 0.002469738
sp 0.002469738 0.003061590
> library(mnormt) % Load package
> x=rmnorm(1029,mean=m1,varcov=v1) % Simulation
> dim(x)
[1] 1029 2
> plot(x[,2],x[,1],xlab=‘sim-sp’,ylab=‘sim-ibm’,cex=0.8)

EXERCISES

1. Consider the daily simple returns of American Express (AXP), CRSP value-
weighted index (VW), CRSP equal-weighted index (EW), and the S&P com-
posite index (SP) from September 01, 2001 to September 30, 2011. Returns
of indices include dividends. The data are in the file d-axp3dx-0111.txt
(date, axp, vw, ew, sp).

(a) Compute the sample mean, standard deviation, skewness, excess kurtosis,
minimum, and maximum of each simple return series.
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(b) Transform the simple returns to log returns. Compute the sample mean,
standard deviation, skewness, excess kurtosis, minimum, and maximum of
each log return series.

(c) Test the null hypothesis that the mean of the log returns of AXP stock is
zero. Use 5% significance level to draw your conclusion.

2. Answer the same questions as Problem 1 but using monthly returns for Gen-
eral Electric (GE), CRSP value-weighted index (VW), CRSP equal-weighted
index (EW), and S&P composite index from January 1940 to September 2011.
The returns include dividend distributions. Data file is m-ge3dx-4011.txt
(date, ge, vw, ew, sp).

3. Consider the monthly stock returns of S&P composite index from January
1940 to September 2011 in Problem 2. Perform the following tests and draw
conclusions using the 5% significance level.

(a) Test H0 : μ = 0 versus Ha : μ �= 0, where μ denotes the mean return.

(b) Test H0 : m3 = 0 versus Ha : m3 �= 0, where m3 denotes the skewness.

(c) Test H0 : K = 3 versus Ha : K �= 3, where K denotes the kurtosis.

4. Consider the daily log returns of American Express stock from September 1,
2001 to September 30, 2011 as in Problem 1. Use the 5% significance level
to perform the following tests: (i) Test the null hypothesis that the skewness
measure of the returns is zero and (ii) test the null hypothesis that the excess
kurtosis of the returns is zero.

5. Daily foreign exchange rates (spot rates) can be obtained from the Federal
Reserve Bank in Chicago. The data are the noon buying rates in New York City
certified by the Federal Reserve Bank of New York. Consider the exchange
rates between the U.S. dollar and the British pound and Japanese yen from
January 2, 2007 to November 30, 2011. The data are also available on the
web. (i) Compute the daily log return of each exchange rate. (ii) Compute
the sample mean, standard deviation, skewness, excess kurtosis, minimum,
and maximum of the log returns of each exchange rate. (iii) Obtain a den-
sity plot of the daily log returns of Dollar–Yen exchange rate. (iv) Test
H0 : μ = 0 versus Ha : μ �= 0, where μ denotes the mean of the daily log
return of Dollar–Yen exchange rate. Use the 5% significance level to draw the
conclusion.

REFERENCES

Adler J. R in a Nutshell. Sebastopol (CA): O’Reilly Media; 2010.

Campbell JY, Lo AW, MacKinlay AC. The Econometrics of Financial Markets. Princeton (NJ):
Princeton University Press; 1997.

Crawley MJ. The R Book. Hoboken (NJ): John Wiley & Sons; 2007.

Hull JC. Options, Futures, and Other Derivatives. 8th ed. Upper Saddle River (NJ): Prentice
Hall; 2011.



38 FINANCIAL DATA AND THEIR PROPERTIES

Jarque CM, Bera AK. A test of normality of observations and regression residuals. Int Stat Rev
1987; 55:163172.
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2

LINEAR MODELS FOR
FINANCIAL TIME SERIES

In this chapter, we discuss the methods and linear models useful in modeling and
forecasting financial time series. We use real examples to introduce important statistical
concepts, illustrate step-by-step data analysis, and discuss financial applications. For
general concepts of linear time series analysis, see Tsay (2010, Chapter 2), Box et al.
(1994, Chapters 2 and 3), Brockwell and Davis (2002, Chapters 1–3), Shumway and
Stoffer (2000), and Woodward et al. (2012).

The models introduced include (i) simple autoregressive (AR) models, (ii) simple
moving average (MA) models, (iii) mixed autoregressive moving average (ARMA)
models, (iv) unit-root models including unit-root tests, (v) exponential smoothing,
(vi) seasonal models, (vii) regression models with time series errors, and (viii) frac-
tionally differenced models for long-range dependence. For each class of models, we
study their fundamental properties, introduce methods for model selection, consider
ways to produce prediction, and discuss their applications. The chapter also discusses
methods for comparing different models, for example, backtesting and model averag-
ing in prediction.

Let {xt } be a collection of certain financial measurements over time. Figure 2.1
shows the daily closing price of Apple stock from January 3, 2003 to April 5,
2010. The daily prices exhibit certain degrees of variability and show an upward

An Introduction to Analysis of Financial Data with R, First Edition. Ruey S. Tsay.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Figure 2.1. Daily closing prices of Apple stock from January 3, 2003 to April 5, 2010.

movement during the sample period. Figure 2.2 shows the quarterly earnings per
share of Coca-Cola Company from 1983 to 2009. The quarters are marked in the plot.
Besides an upward trend, the earnings also exhibit a clear annual pattern, referred to
as seasonality in the time series analysis. It will be seen later that many economic and
financial time series exhibit a clear seasonal pattern. Figure 2.3 gives the monthly log
returns of the S&P 500 index from January 1926 to December 2009. From the plot, it is
seen that the returns fluctuate around 0 and, except for a few extreme values, are within
a fixed range. Figure 2.4 shows two time series. They are the weekly US 3-month and
6-month treasury bill rates from January 2, 1959 to April 16, 2010. The rates are from
the secondary market. The upper plot is the 6-month rate and the lower plot is the
3-month rate. The two series move closely, and also exhibit certain differences. As
expected, the 6-month rate was higher in general, but the 3-month rate appeared to be
higher in some periods, for example, the early 1980s. This phenomenon is referred to as
an inverted yield curve in the term structure of interest rates. In these four examples, the
series xt is observed at (roughly) equally spaced time intervals. They are the examples
of financial time series that we analyze in this chapter. Our goal is to study the dynamic
dependence of the series so that proper inference of the series can be made.

2.1 STATIONARITY

The foundation of statistical inference in time series analysis is the concept of weak
stationarity. As shown in Figure 2.3, the monthly log returns of the S&P 500 index
vary around 0 over time. In fact, one can divide the time span into several subperiods,
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Figure 2.2. Quarterly earnings per share of Coca-Cola Company from the first quarter of 1983

to the third quarter of 2009.
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Figure 2.3. Monthly log returns of S&P 500 index from January 1926 to December 2009.
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Figure 2.4. Weekly rates, from the secondary market, of the US 3-month and 6-month treasury

bills from January 2, 1959 to April 16, 2010.

and the resulting sample means of the subperiods would all be close to 0. In statistics,
this phenomenon suggests that the mean of the returns is constant over time or simply
the expected return is time invariant. Furthermore, Figure 2.3 also shows that, except
for the Great Depression era, the range of the monthly log returns is approximately
[−0.2, 0.2] throughout the sample span. In statistics, this characteristic indicates that
the variance of the log returns is constant over time. Putting these two time-invariant
properties together, we say that the log returns {xt } is weakly stationary. Formally,
a time series xt is weakly stationary if its first two moments (mean and variance)
are time invariant. The weak stationarity is important because they provide the basic
framework for prediction. For the monthly log returns of the S&P 500 index, we can
predict with reasonable confidence that the future monthly returns will be around 0
and vary between −0.2 and 0.2.

On the other hand, consider the quarterly earnings per share of Coca-Cola Com-
pany shown in Figure 2.2. If one divides the time span into few subperiods, the
resulting sample means differ substantially from one subperiod to the other. There-
fore, the earnings are not weakly stationary. This is not surprising because one would
expect that the quarterly earnings of a good company increase over time. The time
plot in Figure 2.2 also shows that the variability of the earnings increased over time.
Therefore, the variance of quarterly earnings is also time varying. Consequently, the
series of quarterly earnings is not stationary. We shall discuss models and methods
for modeling such nonstationary series later.

In the discussion of weak stationarity, we implicitly assume that the first two
moments of xt are finite. For ease in presentation, we denote the mean and variance
of xt by E (xt ) = μ and E (xt − μ)2 = γ0, respectively. Since these two statistics are
time invariant, they are constant and can be represented by simple notation μ and γ0.



CORRELATION AND AUTOCORRELATION FUNCTION 43

A stationary time series xt has many other important properties. For a given integer
k , define the lag-k autocovariance of xt as γk = Cov(xt , xt−k ). One can easily show,
using the Cauchy–Schwarz inequality, that γk exists and is also time invariant. In other
words, for a weakly stationary time series xt , γk depends on k only, and it measures the
linear dependence between xt and xt−k . That is, it measures the dynamic dependence
of xt on its past xt−k . Linear time series analysis focuses on studying the dynamic
dependence of the series xt . The autocovariance γk has two important properties: (i) γ0
= Var(xt ) and (ii) γ−k = γk . The second property holds because γ−k = Cov(xt , xt−(−k))
= Cov(xt−(−k), xt ) = Cov(xt+k , xt ) = Cov(xt1 , xt1−k ) = γk , where t1 = t + k .

2.2 CORRELATION AND AUTOCORRELATION FUNCTION

Figure 2.5 shows the scatter plot of the monthly simple returns of IBM stock and
the S&P 500 index. The two returns appear to be positively related. The degree of
this linear dependence is often measured by the Pearson’s correlation coefficient or
simply correlation coefficient. In statistics, the correlation coefficient between two
random variables X and Y is defined as

ρx ,y = Cov(X , Y )√
Var(X )Var(Y )

= E [(X − μx )(Y − μy )]√
E (X − μx )

2E (Y − μy)
2
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Figure 2.5. Scatter plot of the monthly simple returns: IBM stock versus S&P 500 index. The

time span is from January 1967 to December 2009.
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where μx and μy are the mean of X and Y , respectively, and the variances are assumed
to be finite. This coefficient measures the strength of linear dependence between X
and Y , and it can be shown that −1 ≤ ρx ,y ≤ 1 and ρx ,y = ρy ,x . The two random
variables are uncorrelated if ρx ,y = 0. In addition, if both X and Y are normal random
variables, then ρx ,y = 0 if and only if X and Y are independent.

When the sample {(xt , yt )|t = 1, . . . , T } is available, the correlation can be con-
sistently estimated by its sample counterpart,

ρ̂x ,y =
∑T

t=1(xt − x)(yt − y)√∑T
t=1(xt − x)2

∑T
t=1(yt − y)2

,

where x = ∑T
t=1 xt/T and y = ∑T

t=1 yt/T are the sample mean of X and Y , respec-
tively.

Remark. In theory, the Pearson correlation coefficient is between −1 and 1. How-
ever, for some random variables, the actual range of the coefficient can be shorter.
Some alternative dependence measures have been proposed in the literature. The two
most popular alternatives are Spearman’s rho and Kendall’s tau. Spearman’s rho is
known as Spearman’s rank correlation because it is the correlation coefficient based
on the ranks of the marginal variables. Kendall’s tau denotes the difference between
concordance and discordance. Suppose that (X1, Y1) and (X2, Y2) are two independent
and identically distributed (iid) continuous bivariate random variables. Kendall’s tau
is defined as

τ = P [(X1 − X2)(Y1 − Y2)> 0] − P [(X1 − X2)(Y1 − Y2) < 0].

For illustration, consider the scatter plot of Figure 2.5. The Pearson correlation between
the two monthly simple returns is 0.5857. The Spearman’s rho of the data is 0.5861
and the Kendall’s tau is 0.4196. �

> da=read.table("m-ibmsp6709.txt", header=T)
> head(da)

date ibm sp
1 19670131 0.075370 0.078178
....

6 19670630 0.067024 0.017512
> ibm=da$ibm
> sp5=da$sp
> cor(sp5,ibm)
[1] 0.5856544
> cor(sp5,ibm,method=‘spearman’)
[1] 0.5860817
> cor(sp5,ibm,method=‘kendall’)
[1] 0.4196587
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Autocorrelation Function (ACF). Consider a weakly stationary time series xt .
The correlation coefficient between xt and xt−k is called the lag-k autocorrelation of
xt and is commonly denoted by ρk . Specifically, we define

ρk = Cov(xt , xt−k )√
Var(xt )Var(xt−k )

= Cov(xt , xt−k )

Var(xt )
= γk

γ0
, (2.1)

where Var(xt−k ) = Var(xt ), because xt is weakly stationary. From the definition, we
have ρ0 = 1, ρ� = ρ−�, and −1 ≤ ρ� ≤ 1. The collection of autocorrelations, {ρk }, is
called the autocorrelation function (ACF ) of xt . A weakly stationary time series xt is
not serially correlated if and only if ρk = 0 for all k > 0.

For a given sample {xt |t = 1, . . . , T }, let x be the sample mean (i.e., x =∑T
t=1 xt/T ). Then the lag-1 sample autocorrelation of xt is

ρ̂1 =
∑T

t=2(xt − x)(xt−1 − x)∑T
t=1(xt − x)2

.

Under some general conditions, ρ̂1 is a consistent estimate of ρ1. For example, if
{xt } is a sequence of iid random variables and E (x2

t ) < ∞, then ρ̂1 is asymptotically
normal with mean 0 and variance 1/T (Brockwell and Davis, 2009, Theorem 7.2.2).
In general, the lag-k sample autocorrelation of xt is defined as

ρ̂k =
∑T

t=k+1(xt − x)(xt−k − x)∑T
t=1(xt − x)2

, 0 ≤ k < T − 1. (2.2)

If {xt } is a sequence of iid random variables satisfying E (x 2
t ) < ∞, then ρ̂k is asymp-

totically normal with mean 0 and variance 1/T for any fixed positive integer k . More
generally, if xt is a weakly stationary time series satisfying xt = μ + ∑q

i=0 ψi at−i ,
where ψ0 = 1 and {aj } is a sequence of iid random variables with mean 0, then ρ̂k is
asymptotically normal with mean 0 and variance (1 + 2

∑q
i=1 ρ2

i )/T for k > q . This
is referred to as the Bartlett’s formula in the time series literature (Box et al., 1994).
For more information on the asymptotic distribution of sample autocorrelations ρ̂k ,
see Fuller (1995, Chapter 6) and Brockwell and Davis (2009).

Example 2.1. Consider the monthly simple returns of the Decile 10 portfolio of
CRSP from January 1967 to December 2009. There are 516 observations, that
is, T = 516. The portfolio consists of the smallest 10% of the stocks, in market
capitalization, on NYSE/AMEX/NASDAQ and is rebalanced annually. Figure 2.6a
shows the time plot of the return series, whereas Figure 2.6b gives the sample ACF
of the series. The two horizontal dashed lines of the ACF plot are the two standard
error limits, that is, ±2/

√
T . The ACF plot starts with ρ̂0 = 1. The plot clearly

shows that the lag-1 ACF is significantly different from 0 at the 5% level. The R
commands used in the analysis are given as follows:
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Figure 2.6. Monthly simple returns of CRSP Decile 10 portfolio from January 1967 to December

2009: Panel (a) shows the time plot of the returns and (b) gives the sample ACF of the returns.

> da=read.table("m-dec12910.txt",header=T)
> head(da)

date dec1 dec2 dec9 dec10
1 19670131 0.068568 0.080373 0.180843 0.211806
2 19670228 0.008735 0.011044 0.048767 0.064911
> d10=da$dec10 # select the Decile 10 returns
> dec10=ts(d10,frequency=12,start=c(1967,1))
> par(mfcol=c(2,1))
> plot(dec10,xlab=‘year’,ylab=‘returns’)
> title(main=‘(a): Simple returns’)
> acf(d10,lag=24) # command to obtain sample ACF of the data

�

Testing Individual ACF. For a given positive integer k , the previous result can
be used to test H0 : ρk = 0 versus Ha : ρk �= 0. The test statistic is

t-ratio = ρ̂k√
(1 + 2

∑k−1
i=1 ρ̂2

i )/T
.

If {xt } is a stationary Gaussian series satisfying ρj = 0 for j > k , the t-ratio is asymp-
totically distributed as a standard normal random variable. Hence, the decision rule of
the test is to reject H0 if |t-ratio| > Zα/2, where Zα/2 is the 100(1 − α/2)th percentile of
the standard normal distribution. Alternatively, one can use the p-value of the t-ratio
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to draw a conclusion. If the p-value is less than the type I error, say 0.05, then the
null hypothesis is rejected. If the p-value is greater than or equal to the type I error,
then one cannot reject H0.

For simplicity, many software packages use 1/T as the asymptotic variance of ρ̂k
for all k �= 0. The t-ratio then becomes

√
T ρ̂k . This simplification essentially assumes

that the underlying time series is a sequence of iid random variables.

Example 2.1 (continued). For various reasons, for example, tax consideration or
year-end portfolio adjustment, small stocks in the United States tend to show a positive
return in January. This is referred to as the January effect of small stocks. A simple
approach to verify the existence of the January effect in small stocks is to test the
null hypothesis H0 : ρ12 = 0 versus the alternative hypothesis Ha : ρ12 �= 0, using the
monthly simple returns of CRSP Decile 10 portfolio of Example 2.1. From the data,
we have ρ̂12 = 0.13. Using 1/

√
T as the asymptotic standard error of ρ̂12, we obtain a

t-ratio t = √
T ρ̂12 = 2.96, which is greater than the 5% critical value 1.96. Therefore,

we reject the null hypothesis, that is, ρ12 = 0 at the 5% significance level. In other
words, the data confirm the existence of January effect in small stock returns.

> f1=acf(d10,lag=24)
> f1$acf
[1,] 1.000000000 # lag-0
[2,] 0.227386585 # lag-1
. .......

[13,] 0.130411045 # lag-12
[14,] -0.036881195 # lag-13
> tt=f1$acf[13]*sqrt(516)
> tt
[1] 2.962369

�
In finite samples, ρ̂k is a biased estimator of ρk . The bias is in the order of

1/T , which can be substantial when the sample size T is small. In most financial
applications, T is relatively large so that the bias is not serious.

Portmanteau Test. The statistics ρ̂1, ρ̂2, . . . defined in Equation (2.2) is called
the sample ACF of xt . It plays an important role in linear time series analysis. As
a matter of fact, a linear time series model can be characterized by its ACF, and
linear time series modeling makes use of the sample ACF to specify a model that can
capture the dynamic dependence of the data. In many financial applications, we are
interested in testing jointly that several autocorrelations of xt are 0. Box and Pierce
(1970) propose the Portmanteau statistic

Q∗(m) = T
m∑

�=1

ρ̂2
�

as a test statistic for the null hypothesis H0 : ρ1 = · · · = ρm = 0 against the alter-
native hypothesis Ha : ρi �= 0 for some i ∈ {1, . . . , m}. Under the assumption that
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{xt } is a sequence of iid random variables with certain moment conditions, Q∗(m) is
asymptotically a chi-squared random variable with m degrees of freedom.

Ljung and Box (1978) modify the Q∗(m) statistic as below to increase the power
of the test in finite samples,

Q(m) = T (T + 2)

m∑
�=1

ρ̂2
�

T − �
. (2.3)

The decision rule is to reject H0 if Q(m)> χ2
α , where χ2

α denotes the 100(1 − α)th
percentile of a chi-squared distribution with m degrees of freedom. Most software
packages will provide the p-value of Q(m). The decision rule then is to reject H0 if
the p-value is less than α, the type I error or significance level.

Example 2.2. Consider the monthly simple and log returns of IBM stock from January
1967 to December 2009. The sample size is 516. Figure 2.7 shows the sample ACFs
of the monthly simple and log returns of IBM stock. The two sample ACFs are close
to each other, and they are all within the two standard error limits, suggesting that the
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Figure 2.7. Sample autocorrelation functions of the monthly simple and log returns of IBM

stock from January 1967 to December 2009. Panel (a) is the ACF of the simple returns and (b)

is the ACF of the log returns.
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serial correlations of monthly IBM stock returns are very small, if any. To verify that
the returns have no serial correlations, we test H0 : ρ1 = ρ2 = · · · = ρm = 0 versus
Ha : ρi �= 0 for some i ∈ {1, . . . , m} with m = 12 and 24. For the simple returns, we
have Q(12) = 7.57 with p-value 0.82 and Q(24) = 25.49 with p-value 0.38. For
the log returns, we have Q(12) = 7.40 with p-value 0.83 and Q(24) = 25.39 with
p-value 0.38. Therefore, the Ljung–Box statistics cannot reject the null hypothesis of
no serial correlations in the IBM stock returns.

> da=read.table("m-ibmsp6709.txt",header=T)
> ibm=da$ibm
> lnibm=log(ibm+1) # Transfer to log returns
> Box.test(ibm,lag=12,type=‘Ljung’)

Box-Ljung test
data: ibm
X-squared = 7.5666, df = 12, p-value = 0.818

> Box.test(lnibm,lag=12,type=‘Ljung’)
Box-Ljung test

data: lnibm
X-squared = 7.4042, df = 12, p-value = 0.8298

�

In practice, the choice of m may affect the performance of the Q(m) statistic.
Several values of m are often used. Simulation studies suggest that the choice of
m ≈ ln(T ) provides better power performance. This general rule needs modification
in analyzing seasonal time series for which autocorrelations with lags at the multiples
of the seasonality are more important. For instance, lags 12 and 24 are important for
monthly time series.

Example 2.1 (continued). For the monthly simple returns of the Decile 10 portfolio
of Example 2.1, the Ljung–Box statistics show that Q(12) = 41.06 with p-value
4.79 × 10−5 and Q(24) = 56.25 with p-value 2.12 × 10−4. These p-values are small
so that the null hypothesis of no serial correlations is rejected at the 5% significance
level. Consequently, there exist serial correlations in the monthly simple returns of
the Decile 10 portfolio. �

Let xt be a series of asset returns. In the finance literature, a version of the
capital asset pricing model (CAPM) theory is that {xt } is not predictable and should
have no autocorrelations. Testing for zero autocorrelations has been used as a tool to
check the efficient market hypothesis. However, the way by which stock prices are
determined and index returns are calculated might introduce autocorrelations in the
observed return series. This is particularly so in analysis of high frequency financial
data. We discuss some of these issues, such as bid–ask bounce and nonsynchronous
trading, in Chapter 6.
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2.3 WHITE NOISE AND LINEAR TIME SERIES

White Noise. A time series xt is called a white noise if {xt } is a sequence of
iid random variables with finite mean and variance. In particular, if xt is normally
distributed with mean 0 and variance σ 2, the series is called a Gaussian white noise.
For a white noise series, all the ACFs are 0. In practice, if all sample ACFs are close
to 0, then the series is a white noise series. On the basis of Figures 2.7 and 2.6b, the
monthly returns of IBM stock are close to white noise, whereas those of the Decile
10 portfolio are not.

In the following text, we discuss some simple statistical models that are useful
in modeling the dynamic structure of a time series. The concepts presented are also
useful later in modeling volatility of asset returns.

Linear Time Series. A time series xt is said to be linear if it can be written as

xt = μ +
∞∑

i=0

ψi at−i , (2.4)

where μ is the mean of xt , ψ0 = 1, and {at } is a sequence of iid random variables with
mean 0 and a well-defined distribution (i.e., {at } is a white noise series). It will be
seen later that at denotes the new information at time t of the time series and is often
referred to as the innovation or shock at time t . Thus, a time series is linear if it can
be written as a linear combination of past innovations. In this book, we are mainly
concerned with the case where the innovation at is a continuous random variable.
Not all financial time series are linear, but linear models can often provide accurate
approximations in real applications.

For a linear time series in Equation (2.4), the dynamic structure of xt is governed
by the coefficients ψi , which are called the ψ-weights of xt in the time series litera-
ture. If xt is weakly stationary, we can obtain its mean and variance easily by using
properties of {at } as

E (xt ) = μ, Var(xt ) = σ 2
a

∞∑
i=0

ψ2
i , (2.5)

where σ 2
a is the variance of at . Because Var(xt ) < ∞, {ψ2

i } must be a convergent
sequence, implying that ψ2

i → 0 as i → ∞. Consequently, for a stationary series,
impact of the remote shock at−i on the return xt vanishes as i increases.

The lag-� autocovariance of xt is

γ� = Cov(xt , xt−�) = E

⎡
⎣( ∞∑

i=0

ψi at−i

) ⎛
⎝ ∞∑

j=0

ψj at−�−j

⎞
⎠

⎤
⎦
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= E

⎛
⎝ ∞∑

i ,j=0

ψi ψj at−i at−�−j

⎞
⎠ =

∞∑
j=0

ψj+�ψj E (a2
t−�−j )

= σ 2
a

∞∑
j=0

ψj ψj+�. (2.6)

Consequently, the ψ-weights are related to the autocorrelations of xt as follows:

ρ� = γ�

γ0
=

∑∞
i=0 ψi ψi+�

1 + ∑∞
i=1 ψ2

i

, � ≥ 0, (2.7)

where ψ0 = 1. Linear time series models are econometric and statistical models
employed to describe the pattern of the ψ-weights of xt . For a weakly stationary time
series, ψi → 0 as i → ∞ and, hence, ρ� converges to 0 as � increases. For asset
returns, this means that, as expected, the linear dependence of the current return xt on
the remote past return xt−� diminishes for large �.

2.4 SIMPLE AUTOREGRESSIVE MODELS

When xt has a statistically significant lag-1 autocorrelation, the lagged value xt−1
might be useful in predicting xt . A simple model that makes use of such predictive
power is

xt = φ0 + φ1xt−1 + at , (2.8)

where {at } is assumed to be a white noise series with mean 0 and variance σ 2
a . This

model is in the same form as the well-known simple linear regression model, in which
xt is the dependent variable and xt−1 is the explanatory variable. In the time series
literature, model (Eq. 2.8) is referred to as an AR model of order 1 or simply an AR(1)
model. This simple model is also widely used in stochastic volatility modeling when
xt is replaced by its log volatility (Chapter 4).

The AR(1) model in Equation (2.8) has several properties similar to those of
the simple linear regression model. However, there are some significant differences
between the two models, which we discuss later. Here, it suffices to note that an AR(1)
model implies that, conditional on the past return xt−1, we have

E (xt |xt−1) = φ0 + φ1xt−1, Var(xt |xt−1) = Var(at ) = σ 2
a .

For asset returns, the above results imply that given the past return xt−1, the cur-
rent return is centered around φ0 + φ1xt−1 with standard deviation σa . This is a
Markov property such that conditional on xt−1, the return xt is not correlated with xt−i
for i > 1. Obviously, there are situations in which xt−1 alone cannot determine the
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conditional expectation of xt and a more flexible model must be sought. A straight-
forward generalization of the AR(1) model is the AR(p) model

xt = φ0 + φ1xt−1 + · · · + φpxt−p + at , (2.9)

where p is a nonnegative integer and {at } is defined in Equation (2.8). This model
says that, given the past data, the first p lagged variables xt−i (i = 1, . . . , p) jointly
determine the conditional expectation of xt . The AR(p) model is in the same form
as a multiple linear regression model with lagged values serving as the explanatory
variables.

2.4.1 Properties of AR Models

For effective use of AR models, it pays to study their basic properties. We discuss
properties of AR(1) and AR(2) models in detail and give the results for the general
AR(p) model.

AR(1) Model. We begin with the sufficient and necessary condition for weak
stationarity of the AR(1) model in Equation (2.8). Assuming that the series is weakly
stationary, we have E (xt ) = μ, Var(xt ) = γ0, and Cov(xt , xt−j ) = γj , where μ and γ0
are constants and γj is a function of j , not t . We can easily obtain the mean, variance,
and autocorrelations of the series as follows. Taking the expectation of Equation (2.8)
and using E (at ) = 0, we obtain

E (xt ) = φ0 + φ1E (xt−1).

Under the stationarity condition, E (xt ) = E (xt−1) = μ and hence

μ = φ0 + φ1μ or E (xt ) = μ = φ0

1 − φ1
.

This result has two implications for xt . First, the mean of xt exists if φ1 �= 1. Second,
the mean of xt is 0 if and only if φ0 = 0. Thus, for a stationary AR(1) process, the
constant term φ0 is related to the mean of xt via φ0 = (1 − φ1)μ, and φ0 = 0 implies
that E (xt ) = 0.

Next, using φ0 = (1 − φ1)μ, the AR(1) model can be rewritten as

xt − μ = φ1(xt−1 − μ) + at . (2.10)

By repeated substitutions, the prior equation implies that

xt − μ = at + φ1at−1 + φ2
1at−2 + · · ·

=
∞∑

i=0

φi
1at−i . (2.11)
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This equation expresses an AR(1) model in the form of Equation (2.4) with ψi =
φi

1. Thus, xt − μ is a linear function of at−i for i ≥ 0. Using this property and the
independence of the series {at }, we obtain E [(xt − μ)at+1] = 0. By the stationarity
assumption, we have Cov(xt−1, at ) = E [(xt−1 − μ)at ] = 0. This latter result can also
be seen from the fact that xt−1 occurred before time t and at , being a shock at time
t , does not depend on any past information. Taking the square and the expectation of
Equation (2.10), we obtain

Var(xt ) = φ2
1Var(xt−1) + σ 2

a ,

where σ 2
a is the variance of at , and we make use of the fact that the covariance between

xt−1 and at is 0. Under the stationarity assumption, Var(xt ) = Var(xt−1), so that

Var(xt ) = σ 2
a

1 − φ2
1

provided that φ2
1 < 1. The requirement of φ2

1 < 1 results from the fact that the vari-
ance of a random variable is nonnegative and xt is weakly stationary. Consequently,
the weak stationarity of an AR(1) model implies that −1 < φ1 < 1, that is, |φ1| < 1.
Yet if |φ1| < 1, then by Equation (2.11) and the independence of the {at } series, we
can show that the mean and variance of xt are finite and time invariant; see Equation
(2.5). In addition, by Equation (2.6), all the autocovariances of xt are finite. Therefore,
the AR(1) model is weakly stationary. In summary, the necessary and sufficient
condition for the AR(1) model in Equation (2.8) to be weakly stationary is |φ1| < 1.

Using φ0 = (1 − φ1)μ, one can rewrite a stationary AR(1) model as

xt = (1 − φ1)μ + φ1xt−1 + at .

This model is often used in the finance literature with φ1 measuring the persistence
of the dynamic dependence of an AR(1) time series.

Autocorrelation Function of an AR(1) Model. Multiplying Equation (2.10)
by at , using the independence between at and xt−1, and taking expectation, we obtain

E [at (xt − μ)] = φ1E [at (xt−1 − μ)] + E (a2
t ) = E (a2

t ) = σ 2
a ,

where σ 2
a is the variance of at . Multiplying Equation (2.10) by (xt−� − μ), taking

expectation, and using the prior result, we have

γ� =
{

φ1γ1 + σ 2
a if � = 0

φ1γ�−1 if �> 0,

where we use γ� = γ−�. Consequently, for a weakly stationary AR(1) model in
Equation (2.8), we have

Var(xt ) = γ0 = σ 2

1 − φ2
1

and γ� = φ1γ�−1, for �> 0.
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From the latter equation, the ACF of xt satisfies

ρ� = φ1ρ�−1, for �> 0.

Because ρ0 = 1, we have ρ� = φ�
1. This result says that the ACF of a weakly station-

ary AR(1) series decays exponentially with rate φ1 and starting value ρ0 = 1. For a
positive φ1, the plot of ACF of an AR(1) model shows a nice exponential decay. For
a negative φ1, the plot consists of two alternating exponential decays with rate φ2

1 .
Figure 2.8 shows the ACF of two AR(1) models with φ1 = 0.8 and φ1 = −0.8.

AR(2) Model. An AR(2) model assumes the form

xt = φ0 + φ1xt−1 + φ2xt−2 + at . (2.12)

Using the same technique as that of the AR(1) case, we obtain

E (xt ) = μ = φ0

1 − φ1 − φ2

provided that φ1 + φ2 �= 1. Using φ0 = (1 − φ1 − φ2)μ, we can rewrite the AR(2)
model as

(xt − μ) = φ1(xt−1 − μ) + φ2(xt−2 − μ) + at .
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Figure 2.8. The autocorrelation function of an AR(1) model: (a) for φ1 = 0.8 and (b) for φ1 =
−0.8.
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Multiplying the prior equation by (xt−� − μ), we have

(xt−� − μ)(xt − μ) = φ1(xt−� − μ)(xt−1 − μ)

+ φ2(xt−� − μ)(xt−2 − μ) + (xt−� − μ)at .

Taking expectation and using E [(xt−� − μ)at ] = 0 for �> 0, we obtain

γ� = φ1γ�−1 + φ2γ�−2, for �> 0.

This result is referred to as the moment equation of a stationary AR(2) model. Dividing
the above equation by γ0, we have the property

ρ� = φ1ρ�−1 + φ2ρ�−2, for �> 0, (2.13)

for the ACF of xt . In particular, the lag-1 ACF satisfies

ρ1 = φ1ρ0 + φ2ρ−1 = φ1 + φ2ρ1.

Therefore, for a stationary AR(2) series xt , we have ρ0 = 1,

ρ1 = φ1

1 − φ2

ρ� = φ1ρ�−1 + φ2ρ�−2, � ≥ 2.

The result of Equation (2.13) says that the ACF of a stationary AR(2) series satisfies
the second-order difference equation

(1 − φ1B − φ2B2)ρ� = 0,

where B is called the backshift operator such that Bρ� = ρ�−1. This difference
equation determines the properties of the ACF of a stationary AR(2) time series. It
also determines the behavior of the forecasts of xt . In the time series literature, some
people use the notation L instead of B for the backshift operator. Here, L stands for
lag operator. For instance, Lxt = xt−1 and Lψk = ψk−1.

Corresponding to the prior difference equation, there is a second-order polynomial
equation

1 − φ1z − φ2z 2 = 0. (2.14)

Solutions of this equation are

z =
φ1 ±

√
φ2

1 + 4φ2

−2φ2
.
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In the time series literature, inverses of the two solutions are referred to as the
characteristic roots of the AR(2) model. Denote the two characteristic roots by ω1
and ω2. If both ωi are real valued, then the second-order difference equation of the
model can be factored as (1 − ω1B)(1 − ω2B), and the AR(2) model can be regarded
as an AR(1) model operates on top of another AR(1) model. The ACF of xt is then
a mixture of two exponential decays. If φ2

1 + 4φ2 < 0, then ω1 and ω2 are complex
numbers (called a complex conjugate pair), and the plot of ACF of xt would show
a picture of damping sine and cosine waves. In business and economic applications,
complex characteristic roots are important. They give rise to the behavior of business
cycles. It is then common for economic time series models to have complex-valued
characteristic roots. For an AR(2) model in Equation (2.12) with a pair of complex
characteristic roots, the average length of the stochastic cycles is

k = 2π

cos−1[φ1/(2
√−φ2)]

,

where the cosine inverse is stated in radian. If one writes the complex solutions as
a ± bi , where i = √−1, then we have φ1 = 2a , φ2 = −(a2 + b2), and

k = 2π

cos−1(a/
√

a2 + b2)
,

where
√

a2 + b2 is the absolute value of a ± bi . See Example 2.3 for an illustration.
Figure 2.9 shows the ACF of four stationary AR(2) models. Part (b) is the ACF of

the AR(2) model (1 − 0.6B + 0.4B2)xt = at . Because φ2
1 + 4φ2 = 0.36 + 4 × (−0.4)

= −1.24 < 0, this particular AR(2) model contains two complex characteristic roots,
and hence its ACF exhibits damping sine and cosine waves. The other three AR(2)
models have real-valued characteristic roots. Their ACFs decay exponentially.

Example 2.3. As an illustration, consider the quarterly growth rate of US gross
national product (GNP), seasonally adjusted, from the second quarter of 1947 to the
first quarter of 2010 for 252 observations. The log series of GNP, in billions of dollars,
and its growth rate are shown in Figure 2.10. A horizontal line of zero is added to
the time plot of the growth rate. The plot clearly shows that most of the growth rates
are positive and the largest drop in GNP occurred in the 2008 recession.

On the basis of the model building procedure of the next section, we employ an
AR(3) model for the data. The fitted model is

(1 − 0.438B − 0.206B2 + 0.156B3)(xt − 0.016) = at , σ̂a = 9.55 × 10−5. (2.15)

The standard errors of the estimates are 0.062, 0.067, 0.063, and 0.001, respectively.
See the attached R output for further information. Model (2.15) gives rise to a third-
order polynomial equation

1 − 0.438z − 0.206z 2 + 0.156z 3 = 0,
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Figure 2.9. The autocorrelation function of an AR(2) model: (a) φ1 = 1.2 and φ2 = −0.35,

(b) φ1 = 0.6 and φ2 = −0.4, (c) φ1 = 0.2 and φ2 = 0.35, and (d) φ1 = −0.2 and φ2 = 0.35.
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Figure 2.10. Time plots of US quarterly gross national product from 1947.I to 2010.I: (a) Log

GNP series and (b) growth rate. The data are seasonally adjusted and in billions of dollars.
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which has three solutions, namely, 1.616 + 0.864i , 1.616 − 0.864i , and −1.909. The
real solution corresponds to a factor [1 − (1/ − 1.909)z ] = (1 + 0.524z ) that shows
an exponentially decaying feature of the GNP growth rate. Focusing on the complex
conjugate pair 1.616 ± 0.864i , we obtain the absolute value

√
1.6162 + 0.8642 =

1.833 and

k = 2π

cos−1(1.616/1.833)
≈ 12.80.

Therefore, the fitted AR(3) model confirms the existence of business cycles in the US
economy, and the average length of the cycles is 12.8 quarters, which is about 3 years.
This result is reasonable as the US economy went through expansion and contraction
and the length of expansion is generally believed to be around 3 years. If one uses a
nonlinear model to separate US economy into “expansion” and “contraction” periods,
the data show that the average duration of contraction periods is about three quarters
and that of expansion periods is about 3 years; see, for instance, the analysis in Tsay
(2010, Chapter 4). The average duration of 12.8 quarters is a compromise between the
two separate durations. The periodic feature obtained here is common among growth
rates of national economies. For example, similar features can be found for many
economies in the Organization for Economic Cooperation and Development (OECD)
countries.

> da=read.table("q-gnp4710.txt",header=T)
> head(da)
Year Mon Day VALUE

1 1947 1 1 238.1
...

6 1948 4 1 268.7
> G=da$VALUE
> LG=log(G)
> gnp=diff(LG)
> dim(da)
[1] 253 4
> tdx=c(1:253)/4+1947 # create the time index
> par(mfcol=c(2,1))
> plot(tdx,LG,xlab=’year’,ylab=’GNP’,type=’l’)
> plot(tdx[2:253],gnp,type=’l’,xlab=’year’,ylab=’growth’)
> acf(gnp,lag=12)
> pacf(gnp,lag=12) # compute PACF
> m1=arima(gnp,order=c(3,0,0))
> m1
Call:
arima(x = gnp, order = c(3, 0, 0))

Coefficients:
ar1 ar2 ar3 intercept

0.4386 0.2063 -0.1559 0.0163
s.e. 0.0620 0.0666 0.0626 0.0012
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sigma^2 estimated as 9.549e-05:log likelihood=808.6,aic=-1607.1
> tsdiag(m1,gof=12) # model checking discussed later
> p1=c(1,-m1$coef[1:3]) # set-up the polynomial
> r1=polyroot(p1) # solve the polynomial equation
> r1
[1] 1.616116+0.864212i -1.909216-0.000000i 1.616116-0.864212i
> Mod(r1)
[1] 1.832674 1.909216 1.832674 # compute absolute values
> k=2*pi/acos(1.616116/1.832674) # compute length of the period
> k
[1] 12.79523

�

Stationarity. The stationarity condition of an AR(2) time series is that the abso-
lute values of its two characteristic roots are less than 1, that is, its two characteristic
roots are less than 1 in modulus. Equivalently, the two solutions of the character-
istic equation are greater than 1 in modulus. Under such a condition, the recursive
equation in Equation (2.13) ensures that the ACF of the model converges to 0 as the
lag � increases. This convergence property is a necessary condition for a stationary
time series. In fact, the condition also applies to the AR(1) model, where the polyno-
mial equation is 1 − φ1z = 0. The characteristic root is w = 1/z = φ1, which must
be less than 1 in modulus for xt to be stationary. As shown before, ρ� = φ�

1 for a
stationary AR(1) model. The condition implies that ρ� → 0 as � → ∞.

AR(p) Model. The results of AR(1) and AR(2) models can readily be generalized
to the general AR(p) model in Equation (2.9). The mean of a stationary series is

E (xt ) = φ0

1 − φ1 − · · · − φp

provided that the denominator is not 0. The associated characteristic equation of the
model is

1 − φ1z − φ2z 2 − · · · − φpz p = 0.

If all the solutions of this equation are greater than 1 in modulus, then the series xt is
stationary. Again, inverses of the solutions are the characteristic roots of the model.
Thus, stationarity requires that all characteristic roots are less than 1 in modulus. For
a stationary AR(p) series, the ACF satisfies the difference equation

(1 − φ1B − φ2B2 − · · · − φpBp)ρ� = 0, for �> 0.

The plot of ACF of a stationary AR(p) model would then show a mixture of damping
sine and cosine patterns and exponential decays depending on the nature of its
characteristic roots.
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2.4.2 Identifying AR Models in Practice

In application, the order p of an AR time series is unknown. It must be specified
empirically. This is referred to as the order determination (or order specification) of
AR models, and it has been extensively studied in the time series literature. Two
general approaches are available for determining the value of p. The first approach
is to use the partial autocorrelation function (PACF), and the second approach uses
some information criteria.

Partial Autocorrelation Function (PACF). The PACF of a stationary time
series is a function of its ACF and is a useful tool for determining the order p of an
AR model. A simple, yet effective way to introduce PACF is to consider the following
AR models in consecutive orders:

xt = φ0,1 + φ1,1xt−1 + e1t ,

xt = φ0,2 + φ1,2xt−1 + φ2,2xt−2 + e2t ,

xt = φ0,3 + φ1,3xt−1 + φ2,3xt−2 + φ3,3xt−3 + e3t ,

xt = φ0,4 + φ1,4xt−1 + φ2,4xt−2 + φ3,4xt−3 + φ4,4xt−4 + e4t ,

...
...

where φ0,j , φi ,j , and {ejt } are, respectively, the constant term, the coefficient of xt−i ,
and the error term of an AR(j ) model. These models are in the form of a multiple
linear regression and can be estimated by the least squares (LS) method. As a matter of
fact, they are arranged in a sequential order that enables us to apply the idea of partial
F test in multiple linear regression analysis. The estimate φ̂1,1 of the first equation is
called the lag-1 sample PACF of xt . The estimate φ̂2,2 of the second equation is the
lag-2 sample PACF of xt . The estimate φ̂3,3 of the third equation is the lag-3 sample
PACF of xt , and so on.

From the definition, the lag-2 PACF φ̂2,2 shows the added contribution of xt−2 to
xt over the AR(1) model xt = φ0 + φ1xt−1 + e1t . The lag-3 PACF shows the added
contribution of xt−3 to xt over an AR(2) model, and so on. Therefore, for an AR(p)
model, the lag-p sample PACF should not be 0, but φ̂j ,j should be close to 0 for
all j > p. We make use of this property to determine the order p. For a stationary
Gaussian AR(p) model, it can be shown that the sample PACF has the following
properties:

• φ̂p,p converges to φp as the sample size T goes to infinity.

• φ̂�,� converges to 0 for all �> p.

• The asymptotic variance of φ̂�,� is 1/T for �> p.

These results say that, for an AR(p) series, the sample PACF cuts off at lag p.
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TABLE 2.1. Sample Partial Autocorrelation Function and Some Information Criteria for the
Monthly Simple Returns of CRSP Value-Weighted Index From January 1926 to December
2008

p 1 2 3 4 5 6

PACF 0.115 −0.030 −0.102 0.033 0.062 −0.050
AIC −5.838 −5.837 −5.846 −5.845 −5.847 −5.847
BIC −5.833 −5.827 −5.831 −5.825 −5.822 −5.818

p 7 8 9 10 11 12

PACF 0.031 0.052 0.063 0.005 −0.005 0.011
AIC −5.846 −5.847 −5.849 −5.847 −5.845 −5.843
BIC −5.812 −5.807 −5.805 −5.798 −5.791 −5.784

As an example, consider the monthly simple returns of CRSP value-weighted
index from January 1926 to December 2008. Table 2.1 gives the first 12 lags of
sample PACF of the series. With T = 996, the asymptotic standard error of the
sample PACF is approximately 0.032. Therefore, using the 5% significant level, we
identify an AR(3) or AR(9) model for the data (i.e., p = 3 or 9). If the 1% significant
level is used, we specify an AR(3) model.

As another example, Figure 2.11 shows the ACF and PACF of the GNP growth
rate series of Example 2.3. The two dotted lines of the plots denote the approximate
two standard error limits ±2/

√
252. The PACF plot suggests an AR(3) model for the

data because the first three lags of sample PACF appear to be significant at the 5%
level. There is a marginally significant PACF at lag 9. We do not consider high order
models here for simplicity.

Information Criteria. There are several information criteria available to deter-
mine the order p of an AR process. All of them are likelihood based. For example,
the well-known Akaike Information Criterion (AIC ) (Akaike, 1973) is defined as

AIC = −2

T
ln(likelihood) + 2

T
× (number of parameters), (2.16)

where the likelihood function is evaluated at the maximum likelihood estimates and
T is the sample size. For a Gaussian AR(�) model, AIC reduces to

AIC(�) = ln(σ̃ 2
� ) + 2�

T
,

where σ̃ 2
� is the maximum likelihood estimate of σ 2

a , which is the variance of at ,
and T is the sample size. The first term of the AIC in Equation (2.16) measures the
goodness of fit of the AR(�) model to the data, whereas the second term is called the
penalty function of the criterion because it penalizes a candidate model by the number
of parameters used. Different penalty functions result in different information criteria.
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Figure 2.11. Sample autocorrelation and partial autocorrelation functions of the US quarterly

real GNP growth rate from 1947.II to 2010.I. The dotted lines give approximate pointwise 95%

confidence interval.

Another commonly used criterion function is the Schwarz–Bayesian criterion
(BIC, Bayesian information criterion). For a Gaussian AR(�) model, the criterion is

BIC(�) = ln(σ̃ 2
� ) + � ln(T )

T
.

The penalty for each parameter used is 2 for AIC and ln(T ) for BIC. Thus, compared
with AIC, BIC tends to select a lower AR model when the sample size is moderate
or large.

Selection Rule. To use AIC to select an AR model in practice, one computes
AIC(�) for � = 0, . . . , P , where P is a prespecified positive integer and selects the
order k that has the minimum AIC value. The same rule applies to BIC.

Table 2.1 also gives the AIC and BIC for p = 1, . . . , 12. The AIC values are close
to each other with minimum −5.849 occurring at p = 9, suggesting that an AR(9)
model is preferred by the criterion. The BIC, on the other hand, attains its minimum
value −5.833 at p = 1 with −5.831 as a close second at p = 3. Thus, the BIC selects
an AR(1) model for the value-weighted return series. This example shows that different
approaches or criteria to order determination may result in different choices of p. There
is no evidence to suggest that one approach outperforms the other in a real application.
Substantive information of the problem under study and simplicity are two factors that
also play an important role in choosing an AR model for a given time series.
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Figure 2.12. Akaike information criterion for the quarterly growth rates of US real GNP from

1947.II to 2010.I. The maximum order is P = 12.

Again, consider the growth rate series of US quarterly real GNP of Example 2.3.
The AIC values with P = 12 are shown in Figure 2.12. The criterion identifies an
AR(9) model for the series, but it also gives some justification for an AR(3) model.
The plot indicates that AIC would specify an AR(3) model if one focuses on lower-
order models. Note that the AIC value of the ar command in R has been adjusted so
that the minimum AIC is 0.

> mm1=ar(gnp,method=‘mle’)
> mm1$order % Find the identified order
[1] 9
> names(mm1)
[1] "order" "ar" "var.pred" "x.mean" "aic"
[6] "n.used" "order.max" "partialacf" "resid" "method"

[11] "series" "frequency" "call" "asy.var.coef"
> print(mm1$aic,digits=3)

0 1 2 3 4 5 6 7 8 9
77.8 11.92 8.79 4.669 6.265 5.950 5.101 4.596 6.541 0.000

10 11 12
0.509 2.504 2.057

> aic=mm1$aic % For plotting below.
> length(aic)
[1] 13
> plot(c(0:12),aic,type=’h’,xlab=’order’,ylab=’aic’)
> lines(0:12,aic,lty=2)
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Parameter Estimation. For a specified AR(p) model in Equation (2.9), the
conditional LS method, which starts with the (p + 1)th observation, is often used to
estimate the parameters. Specifically, conditioning on the first p observations, we have

xt = φ0 + φ1xt−1 + · · · + φpxt−p + at , t = p + 1, . . . , T ,

which is in the form of a multiple linear regression and can be estimated by the LS
method. Denote the estimate of φi by φ̂i . The fitted model is

x̂t = φ̂0 + φ̂1xt−1 + · · · + φ̂pxt−p

and the associated residual is

ât = xt − x̂t .

The series {ât } is called the residual series , from which we obtain

σ̂ 2
a =

∑T
t=p+1 â2

t

T − 2p − 1
.

If the conditional Gaussian likelihood method is used, the estimates of φi remain
unchanged, but the estimate of σ 2

a becomes σ̃ 2
a = σ̂ 2

a × (T − 2p − 1)/(T − p). In
some packages, σ̃ 2

a is defined as σ̂ 2
a × (T − 2p − 1)/T . For illustration, consider an

AR(3) model for the monthly simple returns of the value-weighted index in Table 2.1.
The fitted model is

xt = 0.0091 + 0.116xt−1 − 0.019xt−2 − 0.104xt−3 + ât , σ̂a = 0.054.

The standard errors of the coefficients are 0.002, 0.032, 0.032, and 0.032, respectively.
Except for the lag-2 coefficient, all parameters are statistically significant at the 1%
level.

For this example, the AR coefficients of the fitted model are small, indicating
that the serial dependence of the series is weak, even though it is statistically signif-
icant at the 1% level. The significance of φ̂0 of the entertained model implies that
the expected mean return of the series is positive. In fact, μ̂ = 0.0091/(1 − 0.116 +
0.019 + 0.104) = 0.009, which is small, but has an important long-term implication.
It implies that the long-term return of the index can be substantial. Using the multi-
period simple return defined in Chapter 1, the average annual simple gross return is
[
∏996

t=1(1 + xt )]
12/996 − 1 ≈ 0.093. In other words, the monthly simple returns of the

CRSP value-weighted index grew about 9.3% per annum from 1926 to 2008, support-
ing the common belief that equity market performs well in the long term. A one-dollar
investment at the beginning of 1926 would be worth about $1593 at the end of 2008.

> vw=read.table(’m-ibm3dx.txt’,header=T)[,3]
> t1=prod(vw+1)
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> t1
[1] 1592.953
> t1^(12/996)-1
[1] 0.0929

Model Checking. A fitted model must be examined carefully to check for
possible model inadequacy. If the model is adequate, then the residual series should
behave as a white noise. The ACF and the Ljung–Box statistics in Equation (2.3)
of the residuals can be used to check the closeness of ât to a white noise. For an
AR(p) model, the Ljung–Box statistic Q(m) follows asymptotically a chi-squared
distribution with m − g degrees of freedom, where g denotes the number of AR
coefficients used in the model. The adjustment in the degrees of freedom is made
based on the number of constraints added to the residuals ât from fitting the AR(p) to
an AR(0) model. If a fitted model is found to be inadequate, it must be refined. For
instance, if some of the estimated AR coefficients are not significantly different from
0, then the model should be simplified by removing those insignificant parameters. If
residual ACF shows additional serial correlations, then the model should be extended
to take care of the those correlations.

Remark. Most time series packages do not adjust the degrees of freedom when
applying the Ljung–Box statistics Q(m) to a residual series. This does not follow
the theory but is understandable when m ≤ g . In R, the command tsdiag can be
used to perform diagnostic checking after fitting a model via the command arima.
More details are discussed later. �

Consider the residual series of the fitted AR(3) model for the monthly value-
weighted simple returns. We have Q(12) = 16.35 with p-value 0.060 based on its
asymptotic chi-squared distribution with 9 degrees of freedom. Thus, the null hypoth-
esis of no residual serial correlation in the first 12 lags is barely not rejected at the
5% level. However, since the lag-2 AR coefficient is not significant at the 5% level,
one can refine the model as

xt = 0.0088 + 0.114xt−1 − 0.106xt−3 + at , σ̂a = 0.0536,

where all the estimates are now significant at the 1% level. The residual series gives
Q(12) = 16.83 with p-value 0.078 (based on χ2

10). The model is adequate in modeling
the dynamic linear dependence of the data.

> vw=read.table(’m-ibm3dx2608.txt’,header=T)[,3]
> m3=arima(vw,order=c(3,0,0))
> m3
Call:
arima(x = vw, order = c(3, 0, 0))

Coefficients:
ar1 ar2 ar3 intercept
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0.1158 -0.0187 -0.1042 0.0089
s.e. 0.0315 0.0317 0.0317 0.0017

sigma^2 estimated as 0.002875:log likelihood=1500.86, aic=-2991.7

> (1-.1158+.0187+.1042)*mean(vw) % Compute the intercept phi(0).
[1] 0.00896761
> sqrt(m3$sigma2) % Compute standard error of residuals
[1] 0.0536189

> Box.test(m3$residuals,lag=12,type=’Ljung’)
Box-Ljung test

data: m3$residuals % R uses 12 degrees of freedom
X-squared = 16.3525, df = 12, p-value = 0.1756

> pv=1-pchisq(16.35,9) % Compute p value using 9 degrees of freedom
> pv
[1] 0.05992276
% To fix the AR(2) coefficient to zero:

> m3=arima(vw,order=c(3,0,0),fixed=c(NA,0,NA,NA))
% The subcommand "fixed" enables users to fix parameter values,
% where NA means estimation and 0 means fixing the parameter to 0.
% The ordering of the parameters can be found using m3$coef.

> m3
Call:
arima(x = vw, order = c(3, 0, 0), fixed = c(NA, 0, NA, NA))

Coefficients:
ar1 ar2 ar3 intercept

0.1136 0 -0.1063 0.0089
s.e. 0.0313 0 0.0315 0.0017

sigma^2 estimated as 0.002876: log likelihood=1500.69, aic=-2993.38
> (1-.1136+.1063)*.0089 % compute phi(0)
[1] 0.00883503
> sqrt(m3$sigma2) % compute residual standard error
[1] 0.05362832

> Box.test(m3$residuals,lag=12,type=’Ljung’)
Box-Ljung test

data: m3$residuals
X-squared = 16.8276, df = 12, p-value = 0.1562

> pv=1-pchisq(16.83,10)
> pv
[1] 0.0782113
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2.4.3 Goodness of Fit

A commonly used statistic to measure goodness of fit of a stationary model is the
R-square (R2) defined as

R2 = 1 − Residual sum of squares

Total sum of squares
.

For a stationary AR(p) time series model with T observations {xt |t = 1, . . . , T }, the
measure becomes

R2 = 1 −
∑T

t=p+1 â2
t∑T

t=p+1(xt − x)2
,

where x = ∑T
t=p+1 xt/(T − p). It is easy to show that 0 ≤ R2 ≤ 1. Typically, a larger

R2 indicates that the model provides a closer fit to the data. However, this is only
true for a stationary time series. For the unit-root nonstationary series discussed later
in this chapter, R2 of an AR(1) fit converges to 1 when the sample size increases to
infinity, regardless of the true underlying model of xt .

For a given data set, it is well known that R2 is a nondecreasing function of the
number of parameters used. To overcome this weakness, an adjusted R2 is proposed,
which is defined as

Adj(R2) = 1 − Variance of residuals

Variance of xt

= 1 − σ̂ 2
a

σ̂ 2
x

,

where σ̂ 2
x is the sample variance of xt . This new measure takes into account the

number of parameters used in the fitted model. However, it is no longer between 0
and 1.

2.4.4 Forecasting

Forecasting is an important application of time series analysis. For the AR(p) model
in Equation (2.9), suppose that we are at the time index h and are interested in
forecasting xh+�, where � ≥ 1. The time index h is called the forecast origin and the
positive integer � is the forecast horizon . Let x̂h(�) be the forecast of xh+� using the
minimum squared error loss function. In other words, the forecast x̂k (�) is chosen
such that

E {[xh+� − x̂h(�)]2|Fh} ≤ min
g

E [(xh+� − g)2|Fh],

where g is a function of the information available at time h (inclusive), that is, a
function of Fh . We referred to x̂h(�) as the �-step ahead forecast of xt at the forecast
origin h . In the prior equation, Fh denotes the collection of information available at
the forecast origin h .
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1-Step Ahead Forecast. From the AR(p) model, we have

xh+1 = φ0 + φ1xh + · · · + φpxh+1−p + ah+1.

Under the minimum squared error loss function, the point forecast of xh+1 given Fh
is the conditional expectation

x̂h(1) = E (xh+1|Fh) = φ0 +
p∑

i=1

φi xh+1−i

and the associated forecast error is

eh(1) = xh+1 − x̂h(1) = ah+1.

Consequently, the variance of the 1-step ahead forecast error is Var[eh(1)] = Var(ah+1)
= σ 2

a . If at is normally distributed, then a 95% 1-step ahead interval forecast of xh+1
is x̂h(1) ± 1.96 × σa . For the linear model in Equation (2.4), at+1 is also the 1-step
ahead forecast error at the forecast origin t . In the econometric literature, at+1 is
referred to as the shock to the series at time t + 1.

In practice, estimated parameters are often used to compute point and interval
forecasts. This results in a conditional forecast because such a forecast does not
take into consideration the uncertainty in the parameter estimates. In theory, one
can consider parameter uncertainty in forecasting, but it is much more involved. A
natural way to consider parameter and model uncertainty in forecasting is Bayesian
forecasting with Markov chain Monte Carlo (MCMC) methods. See Chapter 12 of
Tsay (2010) for further discussion. For simplicity, we assume that the model is given
in this chapter. When the sample size used in estimation is sufficiently large, then the
conditional forecast is close to the unconditional one.

2-Step Ahead Forecast. Next, consider the forecast of xh+2 at the forecast
origin h . From the AR(p) model, we have

xh+2 = φ0 + φ1xh+1 + · · · + φpxh+2−p + ah+2.

Taking conditional expectation, we have

x̂h(2) = E (xh+2|Fh) = φ0 + φ1x̂h(1) + φ2xh + · · · + φpxh+2−p

and the associated forecast error

eh(2) = xh+2 − x̂h(2) = φ1[xh+1 − x̂h(1)] + ah+2 = ah+2 + φ1ah+1.

The variance of the forecast error is Var[eh(2)] = (1 + φ2
1)σ

2
a . Interval forecasts of

xh+2 can be computed in the same way as those for xh+1. It is interesting to see that
Var[eh(2)] ≥ Var[eh(1)], meaning that as the forecast horizon increases the uncertainty
in forecast also increases. This is in agreement with common sense that we are more
uncertain about xh+2 than xh+1 at the time index h for a linear time series.
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Multistep Ahead Forecast. In general, we have

xh+� = φ0 + φ1xh+�−1 + · · · + φpxh+�−p + ah+�.

The �-step ahead forecast based on the minimum squared error loss function is the
conditional expectation of xh+� given Fh , which can be obtained as

x̂h(�) = φ0 +
p∑

i=1

φi x̂h(� − i ),

where it is understood that x̂h(i ) = xh+i if i ≤ 0. This forecast can be computed
recursively using forecasts x̂h(i ) for i = 1, . . . , � − 1. The �-step ahead forecast error
is eh(�) = xh+� − x̂h(�). It can be shown that for a stationary AR(p) model, x̂h(�)

converges to E (xt ) as � → ∞, meaning that for such a series long-term point forecast
approaches its unconditional mean. This property is referred to as the mean reversion
in the finance literature. For an AR(1) model, the speed of mean reversion is measured
by the half-life defined as � = ln(0.5)/ ln(|φ1|). The variance of the forecast error then
approaches the unconditional variance of xt . Note that for an AR(1) model in Equation
(2.8), let xt = xt − E (xt ) be the mean-adjusted series. It is easy to see that the �-step
ahead forecast of xh+� at the forecast origin h is x̂h(�) = φ�

1xh . The half-life is the
forecast horizon such that x̂h(�) = 1

2 xh . That is, φ�
1 = 1

2 . Thus, � = ln(0.5)/ ln(|φ1|).
Table 2.2 contains the 1-step to 12-step ahead forecasts and the standard errors of

the associated forecast errors at the forecast origin 984 for the monthly simple return
of the value-weighted index using an AR(3) model that was reestimated using the first
984 observations. The fitted model is

xt = 0.0098 + 0.1024xt−1 − 0.0201xt−2 − 0.1090xt−3 + at ,

where σ̂a = 0.054. The actual returns of 2008 are also given in the table. Because
of the weak serial dependence in the series, the forecasts and standard deviations
of forecast errors converge to the sample mean and standard deviation of the data
quickly. For the first 984 observations, the sample mean and standard error are 0.0095
and 0.0540, respectively.

Figure 2.13 shows the corresponding out-of-sample prediction plot for the monthly
simple return series of the value-weighted index. The forecast origin t = 984 corre-
sponds to December 2007. The prediction plot includes the two standard error limits
of the forecasts and the actual observed returns for 2008. The forecasts and actual
returns are marked by “o” and “•,” respectively. From the plot, except for the return
of October 2008, all actual returns are within the 95% prediction intervals.

2.5 SIMPLE MOVING AVERAGE MODELS

We now turn to the class of MA models. These models are useful in modeling asset
returns in finance. As is shown in Chapter 6, the bid–ask bounce in stock trading may
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TABLE 2.2. Multistep Ahead Forecasts of an AR(3) Model For The Monthly Simple Returns
of CRSP Value-Weighted Indexa

Step 1 2 3 4 5 6

Forecast 0.0076 0.0161 0.0118 0.0099 0.0089 0.0093
Standard Error 0.0534 0.0537 0.0537 0.0540 0.0540 0.0540
Actual −0.0623 −0.0220 −0.0105 0.0511 0.0238 −0.0786

Step 7 8 9 10 11 12

Forecast 0.0095 0.0097 0.0096 0.0096 0.0096 0.0096
Standard Error 0.0540 0.0540 0.0540 0.0540 0.0540 0.0540
Actual −0.0132 0.0110 −0.0981 −0.1847 −0.0852 0.0215

a The forecast origin is 984.
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Figure 2.13. Plot of 1-step to 12-step ahead out-of-sample forecasts for the monthly simple

return of the CRSP value-weighted index. The forecast origin is t = 984, which is December

2007. The forecasts are denoted by ‘‘o’’ and the actual observations by ‘‘•.’’ The two dashed

lines denote two standard error limits of the forecasts.

introduce the structure of an MA(1) model in a return series. There are several ways
to introduce MA models. One approach is to treat the model as a simple extension
of white noise series. Another approach is to treat the model as an infinite-order AR
model, with some parameter constraints. We adopt the second approach.

There is no particular reason, but simplicity, to assume a priori that the order of
an AR model is finite. We may entertain, at least in theory, an AR model with infinite
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order as

xt = φ0 + φ1xt−1 + φ2xt−2 + · · · + at .

However, such an AR model is not realistic because it has infinite parameters. One
way to make the model practical is to assume that the coefficients φi s satisfy some
constraints so that they are determined by a finite number of parameters. A special
case of this idea is

xt = φ0 − θ1xt−1 − θ2
1 xt−2 − θ3

1 xt−3 − · · · + at , (2.17)

where the coefficients depend on a single parameter θ1 via φi = −θ i
1 for i ≥ 1. For

the model in Equation (2.17) to be stationary, θ1 must be less than 1 in absolute
value; otherwise, θ i

1 and the series will explode. Because |θ1| < 1, we have θ i
1 → 0

as i → ∞. Thus, the contribution of xt−i to xt decays exponentially as i increases.
This is reasonable as the dependence of a stationary series xt on its lagged value xt−i ,
if any, should decay over time.

The model in Equation (2.17) can be rewritten in a rather compact form. To see
this, rewrite the model as

xt + θ1xt−1 + θ2
1 xt−2 + · · · = φ0 + at . (2.18)

The model for xt−1 is then

xt−1 + θ1xt−2 + θ2
1 xt−3 + · · · = φ0 + at−1. (2.19)

Multiplying Equation (2.19) by θ1 and subtracting the result from Equation (2.18), we
obtain

xt = φ0(1 − θ1) + at − θ1at−1,

which says that except for the constant term, xt is a weighted average of shocks at
and at−1. Therefore, the model is called an MA model of order 1 or MA(1) model for
short. The general form of an MA(1) model is

xt = c0 + at − θ1at−1 or xt = c0 + (1 − θ1B)at , (2.20)

where c0 is a constant and {at } is a white noise series. Similarly, an MA(2) model is
in the form

xt = c0 + at − θ1at−1 − θ2at−2, (2.21)

and an MA(q) model is

xt = c0 + at − θ1at−1 − · · · − θq at−q , (2.22)

or xt = c0 + (1 − θ1B − · · · − θq B q)at , where q > 0.
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2.5.1 Properties of MA Models

Again, we focus on the simple MA(1) and MA(2) models. The results of MA(q)
models can easily be obtained by the same techniques.

Stationarity. MA models are always weakly stationary because they are finite
linear combinations of a white noise sequence for which the first two moments are
time invariant. For example, consider the MA(1) model in Equation (2.20). Taking
expectation of the model, we have

E (xt ) = c0,

which is time invariant. Taking the variance of Equation (2.20), we have

Var(xt ) = σ 2
a + θ2

1 σ 2
a = (1 + θ2

1 )σ 2
a ,

where we use the fact that at and at−1 are uncorrelated. Again, Var(xt ) is time invariant.
The prior discussion applies to general MA(q) models, and we obtain two general
properties. First, the constant term of an MA model is the mean of the series (i.e.,
E (xt ) = c0). Second, the variance of an MA(q) model is

Var(xt ) = (1 + θ2
1 + θ2

2 + · · · + θ2
q )σ 2

a .

Autocorrelation Function. Assume for simplicity that c0 = 0 for an MA(1)
model. Multiplying the model by xt−�, we have

xt−�xt = xt−�at − θ1xt−�at−1.

Taking expectation, we obtain

γ1 = −θ1σ
2
a and γ� = 0, for �> 1.

Using the prior result and the fact that Var(xt ) = (1 + θ2
1 )σ 2

a , we have

ρ0 = 1, ρ1 = −θ1

1 + θ2
1

, and ρ� = 0, for �> 1.

Thus, for an MA(1) model, the lag-1 ACF is not 0, but all higher-order ACFs are 0.
In other words, the ACF of an MA(1) model cuts off at lag 1. For the MA(2) model
in Equation (2.21), the autocorrelation coefficients are

ρ1 = −θ1 + θ1θ2

1 + θ2
1 + θ2

2

, ρ2 = −θ2

1 + θ2
1 + θ2

2

, and ρ� = 0, for �> 2. (2.23)

Here, the ACF cuts off at lag 2. This property generalizes to other MA models. For
an MA(q) model, the lag-q ACF is not 0, but ρ� = 0 for �> q . Consequently, an
MA(q) series is only linearly related to its first q lagged values and hence is a “finite
memory” model.
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Invertibility. Rewriting a zero-mean MA(1) model as at = xt + θ1at−1, one can
use repeated substitutions to obtain

at = xt + θ1xt−1 + θ2
1 xt−2 + θ3

1 xt−3 + · · · .

This equation expresses the current shock at as a linear combination of the present
and past values of xt . Intuitively, θ

j
1 should go to 0 as j increases because the remote

return xt−j should have very little impact on the current shock, if any. Consequently,
for an MA(1) model to be plausible, we require |θ1| < 1. Such an MA(1) model is
said to be invertible. If |θ1| = 1, then the MA(1) model is noninvertible. See Tsay
(2010, Chapter 2) for further discussion on invertibility.

2.5.2 Identifying MA Order

The ACF is useful in identifying the order of an MA model. For a time series xt with
ACF ρ�, if ρq �= 0, but ρ� = 0 for �> q , then xt follows an MA(q) model.

Figure 2.14 shows the time plot of monthly simple returns of the CRSP equal-
weighted index from January 1926 to December 2008 and the sample ACF of the
series. The two dashed lines shown on the ACF plot denote the two standard error
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Figure 2.14. Time plot and sample autocorrelation function of monthly simple returns of the

CRSP equal-weighted index from January 1926 to December 2008.
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limits. It is seen that the series has significant ACF at lags 1, 3, and 9. There are some
marginally significant ACF at higher lags, but we do not consider them here. On the
basis of the sample ACF, the following MA(9) model

xt = c0 + at − θ1at−1 − θ3at−3 − θ9at−9

is identified for the series. Note that, unlike the sample PACF, sample ACF provides
information on the nonzero MA lags of the model. To see this, consider, for example, a
simple MA(2) model with θ1 = 0. The model is xt = c0 + at − θ2at−2. Using Equation
(2.23) or via direct evaluation, the ACF of the model is

ρ0 = 1, ρ1 = 0, ρ2 = −θ2

1 + θ2
2

, and ρj = 0 for j > 2.

Therefore, for this particular case, ACF provides the exact information on the structure
of the model.

2.5.3 Estimation

Maximum likelihood estimation is commonly used to estimate MA models. There
are two approaches for evaluating the likelihood function of an MA model. The
first approach assumes that the initial shocks (i.e., at for t ≤ 0) are 0. As such, the
shocks needed in likelihood function calculation are obtained recursively from the
model, starting with a1 = x1 − c0 and a2 = x2 − c0 + θ1a1. This approach is referred
to as the conditional likelihood method and the resulting estimates the conditional
maximum likelihood estimates. The second approach treats the initial shocks at , t ≤ 0
as additional parameters of the model and estimate them jointly with other parameters.
This approach is referred to as the exact likelihood method . The exact likelihood
estimates are preferred over the conditional ones, especially when the MA model
is close to being noninvertible. The exact method, however, requires more intensive
computation. If the sample size is large, then the two types of maximum likelihood
estimates are close to each other. For details of conditional and exact likelihood
estimates of MA models, readers are referred to Box et al. (1994) or Tsay (2010,
Chapter 8).

For illustration, consider the monthly simple return series of the CRSP equal-
weighted index and the specified MA(9) model. The conditional maximum likelihood
method produces the fitted model

xt = 0.012 + at + 0.189at−1 − 0.121at−3 + 0.122at−9, σ̂a = 0.0714, (2.24)

where standard errors of the coefficient estimates are 0.003, 0.031, 0.031, and 0.031,
respectively. The Ljung–Box statistics of the residuals give Q(12) = 17.5 with
p-value 0.041, which is based on an asymptotic chi-squared distribution with 9 degrees
of freedom. The model needs some refinements in modeling the linear dynamic
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dependence of the data. The p-value would be 0.132 if 12 degrees of freedom are
used. The exact maximum likelihood method produces the fitted model

xt = 0.012 + at + 0.191at−1 − 0.120at−3 + 0.123at−9, σ̂a = 0.0714, (2.25)

where standard errors of the estimates are 0.003, 0.031, 0.031, and 0.031, respectively.
The Ljung–Box statistics of the residuals gives Q(12) = 17.6. The corresponding
p-values are 0.040 and 0.128, respectively, when the degrees of freedom are 9 and
12. Again, this fitted model is only marginally adequate. Comparing models (Eq.
2.24) and (Eq. 2.25), we see that for this particular instance, the difference between
the conditional and exact likelihood methods is negligible.

Remark. R uses the exact likelihood method in estimation. In addition, the MA
polynomial is written as 1 + θ1B + · · · + θq Bq instead of the conventional parame-
terization 1 − θ1B − · · · − θq Bq . More specifically, the ARMA(p, q) model under the
R command arima is in the form

(1 − φ1B − · · · − φpBp)(xt − μ) = (1 + θ1B + · · · + θq Bq)at ,

where μ is referred to as the intercept. See the attached R output. �

2.5.4 Forecasting Using MA Models

Forecasts of an MA model can easily be obtained. Because the model has finite
memory, its point forecasts go to the mean of the series quickly. To see this, assume
that the forecast origin is h , and let Fh denote the information available at time h .
For the 1-step ahead forecast of an MA(1) process, the model says

xh+1 = c0 + ah+1 − θ1ah .

Taking the conditional expectation, we have

x̂h(1) = E (xh+1|Fh) = c0 − θ1ah

eh(1) = xh+1 − x̂h(1) = ah+1.

The variance of the 1-step ahead forecast error is Var[eh(1)] = σ 2
a . In practice, the

quantity ah can be obtained in several ways. For instance, assume that a0 = 0, then
a1 = x1 − c0, and we can compute at for 2 ≤ t ≤ h recursively by at = xt − c0 +
θ1at−1. Alternatively, it can be computed by the AR representation of the MA(1)
model (Section 2.6.5). Of course, at is the residual series of a fitted MA(1) model.
Thus, ah is readily available from the estimation.

For the 2-step ahead forecast from the equation

xh+2 = c0 + ah+2 − θ1ah+1,
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we have

x̂h(2) = E (xh+2|Fh) = c0,

eh(2) = xh+2 − r̂h(2) = ah+2 − θ1ah+1.

The variance of the forecast error is Var[eh(2)] = (1 + θ2
1 )σ 2

a , which is the variance
of the model and is greater than or equal to that of the 1-step ahead forecast error.
The prior result shows that for an MA(1) model, the 2-step ahead forecast of the
series is simply the unconditional mean of the model. This is true for any forecast
origin h . More generally, x̂h(�) = c0 for � ≥ 2. In summary, for an MA(1) model,
the 1-step ahead point forecast at the forecast origin h is c0 − θ1ah and the multistep
ahead forecasts are c0, which is the unconditional mean of the model. If we plot the
forecasts x̂h(�) versus �, we see that the forecasts form a horizontal line after one
step. Thus, for MA(1) models, mean reverting only takes one time period.

Similarly, for an MA(2) model, we have

xh+� = c0 + ah+� − θ1ah+�−1 − θ2ah+�−2,

from which we obtain

x̂h(1) = c0 − θ1ah − θ2ah−1

x̂h(2) = c0 − θ2ah

x̂h(�) = c0, for �> 2.

Thus, the multistep ahead forecasts of an MA(2) model go to the mean of the series
after two steps. The variances of forecast errors go to the variance of the series after
two steps. In general, for an MA(q) model, multistep ahead forecasts go to the mean
after the first q steps.

Table 2.3 gives some out-of-sample forecasts of an MA(9) model in the form
of Equation (2.25) for the monthly simple returns of the equal-weighted index at the

TABLE 2.3. Out-of-Sample Forecasts of an MA(9) Model For Monthly Simple Returns of
CRSP Equal-Weighted Indexa.

Step 1 2 3 4 5

Forecast 0.0043 0.0136 0.0150 0.0144 0.0120
Standard Error 0.0712 0.0724 0.0729 0.0729 0.0729
Actual −0.0260 0.0312 0.0322 −0.0871 −0.0010

Step 6 7 8 9 10

Forecast 0.0019 0.0122 0.0056 0.0085 0.0128
Standard Error 0.0729 0.0729 0.0729 0.0729 0.0734
Actual 0.0141 −0.1209 −0.2060 −0.1366 0.0431

a The Forecast Origin is February 2008 With h = 986. The Model is Estimated by the Exact Maximum
Likelihood Method.
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forecast origin h = 986 (February, 2008). The model parameters are reestimated using
the first 986 observations. The sample mean and standard error of the estimation
subsample are 0.0128 and 0.0736, respectively. As expected, the table shows that (i)
the 10-step ahead forecast is the sample mean, and (ii) the standard deviations of the
forecast errors converge to the standard deviation of the series as the forecast horizon
increases. In this particular case, the point forecasts deviate substantially from the
observed returns because of the worldwide financial crisis caused by the subprime
mortgage problem and the collapse of Lehman Brothers.

> da=read.table("m-ibm3dx2608.txt",header=T)
> head(da)

date ibmrtn vwrtn ewrtn sprtn
1 19260130 -0.010381 0.000724 0.023174 0.022472
....

> ew=da$ewrtn
> m1=arima(ew,order=c(0,0,9)) % unrestricted model
> m1
arima(x = ew, order = c(0, 0, 9))
Coefficients:

ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8
0.2144 0.0374 -0.1203 -0.0425 0.0232 -0.0302 0.0482 -0.0276

s.e. 0.0316 0.0321 0.0328 0.0336 0.0319 0.0318 0.0364 0.0354
ma9 intercept

0.1350 0.0122
s.e. 0.0323 0.0028

sigma^2 estimated as 0.005043: log likelihood=1220.86, aic=-2419.72
%% Refined model
> m1=arima(ew,order=c(0,0,9),fixed=c(NA,0,NA,0,0,0,0,0,NA,NA))
> m1
arima(x=ew, order=c(0,0,9), fixed=c(NA,0,NA,0,0,0,0,0,NA,NA))
Coefficients:

ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8 ma9 intercept
0.1909 0 -0.1199 0 0 0 0 0 0.1227 0.0122

s.e. 0.0293 0 0.0338 0 0 0 0 0 0.0312 0.0027

sigma^2 estimated as 0.005097: log likelihood=1215.61, aic=-2421.22
> sqrt(0.005097)
[1] 0.07139328
>
> Box.test(m1$residuals,lag=12,type=’Ljung’) % model checking

Box-Ljung test
data: m1$residuals
X-squared = 17.604, df = 12, p-value = 0.1283

> pv=1-pchisq(17.6,9) % compute p-value after adjusting the d.f.
> pv
[1] 0.04010828
%% To perform out of sample prediction at forecast origin 986.
> m1=arima(ew[1:986],order=c(0,0,9),fixed=c(NA,0,NA,0,0,0,0,0,NA,NA))
> m1
arima(x = ew[1:986], order=c(0,0,9), fixed=c(NA,0,NA,0,0,0,0,0,NA,NA))
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Coefficients:
ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8 ma9 intercept

0.1844 0 -0.1206 0 0 0 0 0 0.1218 0.0128
s.e. 0.0295 0 0.0338 0 0 0 0 0 0.0312 0.0027

sigma^2 estimated as 0.005066: log likelihood =1206.44, aic=-2402.88
> predict(m1,10) % prediction
$pred % point forecast
Time Series:
Start = 987
End = 996
Frequency = 1
[1] 0.0042826 0.0135589 0.0150242 0.0144534 0.0120463 0.0018056
[7] 0.0122115 0.0055148 0.0085135 0.0127918

$se % standard error of prediction
Time Series:
Start = 987
End = 996
Frequency = 1
[1] 0.071175 0.072375 0.072375 0.072882 0.072882 0.072882
[7] 0.072882 0.072882 0.072882 0.073396

Summary. A brief summary of AR and MA models is in order. We have dis-
cussed the following properties:

• for MA models, ACF is useful in specifying the order because ACF cuts off at
lag q for an MA(q) series;

• for AR models, PACF is useful in order determination because PACF cuts off
at lag p for an AR(p) process;

• an MA series is always stationary, but for an AR series to be stationary, all of
its characteristic roots must be less than 1 in modulus;

• for a stationary series, the multistep ahead forecasts converge to the mean of
the series and the variances of forecast errors converge to the variance of the
series as the forecast horizon increases.

2.6 SIMPLE ARMA MODELS

In some applications, the AR or MA models discussed in the previous sections become
cumbersome because one may need a high order model with many parameters to
adequately describe the dynamic structure of the data. To overcome this difficulty, the
ARMA models are introduced (Box et al.,1994). Basically, an ARMA model combines
the ideas of AR and MA models into a compact form so that the number of parameters
used is kept small, achieving parsimony in parameterization. The model is useful in
modeling business, economic, and engineering time series. For the return series in
finance, the chance of using ARMA models is low. However, the concept of ARMA
models is highly relevant in volatility modeling. As a matter of fact, the generalized
autoregressive conditional heteroscedastic (GARCH) model can be regarded as an



SIMPLE ARMA MODELS 79

ARMA model, albeit nonstandard, for the a2
t series; see Chapter 4 for details. In this

section, we study the simplest ARMA(1,1) model.
A time series xt follows an ARMA(1,1) model if it satisfies

xt − φ1xt−1 = φ0 + at − θ1at−1, (2.26)

where {at } is a white noise series. The left-hand side of the Equation (2.26) is the
AR component of the model and the right-hand side gives the MA component. The
constant term is φ0. For this model to be meaningful, we need φ1 �= θ1; otherwise,
there is a cancellation in the equation and the process reduces to a white noise series.

2.6.1 Properties of ARMA(1,1) Models

Properties of ARMA(1,1) models are generalizations of those of AR(1) models with
some minor modifications to handle the impact of the MA(1) component. We start
with the stationarity condition. Taking expectation of Equation (2.26), we have

E (xt ) − φ1E (xt−1) = φ0 + E (at ) − θ1E (at−1).

Because E (ai ) = 0 for all i , the mean of xt is

E (xt ) = μ = φ0

1 − φ1

provided that the series is weakly stationary. This result is exactly the same as that
of the AR(1) model in Equation (2.8).

Next, assuming for simplicity that φ0 = 0, we consider the autocovariance func-
tion of xt . First, multiplying the model by at and taking expectation, we have

E (xt at ) = E (a2
t ) − θ1E (at at−1) = E (a2

t ) = σ 2
a . (2.27)

Rewriting the model as

xt = φ1xt−1 + at − θ1at−1

and taking the variance of the prior equation, we have

Var(xt ) = φ2
1Var(xt−1) + σ 2

a + θ2
1 σ 2

a − 2φ1θ1E (xt−1at−1).

Here we make use of the fact that xt−1 and at are uncorrelated. Using Equation (2.27),
we obtain

Var(xt ) − φ2
1Var(xt−1) = (1 − 2φ1θ1 + θ2

1 )σ 2
a .

Therefore, if the series xt is weakly stationary, then Var(xt ) = Var(xt−1), and we have

Var(xt ) = (1 − 2φ1θ1 + θ2
1 )σ 2

a

1 − φ2
1

.
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Because the variance is positive, we need φ2
1 < 1 (i.e., |φ1| < 1). Again, this is pre-

cisely the same stationarity condition as that of the AR(1) model.
To obtain the autocovariance function of xt , we assume that φ0 = 0 and multiply

the model in Equation (2.26) by xt−� to obtain

xt xt−� − φ1xt−1xt−� = at xt−� − θ1at−1xt−�.

For � = 1, taking expectation and using Equation (2.27) for t − 1, we have

γ1 − φ1γ0 = −θ1σ
2
a ,

where γ� = Cov(xt , xt−�). This result is different from that of the AR(1) case for
which γ1 − φ1γ0 = 0. However, for � = 2 and taking expectation, we have

γ2 − φ1γ1 = 0,

which is identical to that of the AR(1) case. In fact, the same technique yields

γ� − φ1γ�−1 = 0, for �> 1. (2.28)

In terms of ACF, the previous results show that for a stationary ARMA(1,1) model

ρ1 = φ1 − θ1σ
2
a

γ0
, ρ� = φ1ρ�−1, for �> 1.

Thus, the ACF of an ARMA(1,1) model behaves very much similar to that of an
AR(1) model except that the exponential decay starts with lag 2. Consequently, the
ACF of an ARMA(1,1) model does not cut off at any finite lag.

Turning to PACF, one can show that the PACF of an ARMA(1,1) model does
not cut off at any finite lag either. It behaves very much similar to that of an MA(1)
model except that the exponential decay starts with lag 2 instead of lag 1.

In summary, the stationarity condition of an ARMA(1,1) model is the same as
that of an AR(1) model, and the ACF of an ARMA(1,1) exhibits a pattern similar to
that of an AR(1) model except that the pattern starts at lag 2.

2.6.2 General ARMA Models

A general ARMA(p, q) model is in the form

xt = φ0 +
p∑

i=1

φi xt−i + at −
q∑

i=1

θi at−i ,

where {at } is a white noise series and p and q are nonnegative integers. The AR and
MA models are special cases of the ARMA(p, q) model. Using the backshift operator,
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the model can be written as

(1 − φ1B − · · · − φpB p)xt = φ0 + (1 − θ1B − · · · − θq Bq)at . (2.29)

The polynomial 1 − φ1B − · · · − φpBp is the AR polynomial of the model. Similarly,
1 − θ1B − · · · − θq B q is the MA polynomial. We require that there are no common
factors between the AR and MA polynomials; otherwise, the order (p, q) of the model
can be reduced. Similar to a pure AR model, the AR polynomial introduces the
characteristic equation of an ARMA model. If all of the solutions of the characteristic
equation are less than 1 in absolute value, then the ARMA model is weakly stationary.
In this case, the unconditional mean of the model is E (xt ) = φ0/(1 − φ1 − · · · − φp).

2.6.3 Identifying ARMA Models

The ACF and PACF are not informative in determining the order of an ARMA model.
Tsay and Tiao (1984) propose a new approach that uses the extended autocorrelation
function (EACF) to specify the order of an ARMA process. The basic idea of EACF
is relatively simple. If we can obtain a consistent estimate of the AR component of an
ARMA model, then we can derive the MA component. From the derived MA series,
we can use ACF to identify the order of the MA component.

The derivation of EACF is relatively involved; see Tsay and Tiao (1984) for
details. Yet the function is easy to use. The output of EACF is a two-way table, where
the rows correspond to AR order p and the columns to MA order q . The theoretical
version of EACF for an ARMA(1,1) model is given in Table 2.4. The key feature
of the table is that it contains a triangle of “O” with the upper left vertex located at
the order (1,1). This is the characteristic we use to identify the order of an ARMA
process. In general, for an ARMA(p, q) model, the triangle of “O” will have its upper
left vertex at the (p, q) position.

For illustration, consider the monthly log stock returns of the 3M Company from
February 1946 to December 2008. There are 755 observations. The return series and its
sample ACF are shown in Figure 2.15. The ACF indicates that there are no significant

TABLE 2.4. Theoretical EACF Table For an ARMA(1,1) Model, Where ‘‘X’’ Denotes Nonzero,
‘‘O’’ Denotes Zero, and ‘‘*’’ Denotes Either Zero or Nonzeroa

MA

AR 0 1 2 3 4 5 6 7

0 X X X X X X X X
1 X O O O O O O O
2 * X O O O O O O
3 * * X O O O O O
4 * * * X O O O O
5 * * * * X O O O

a This latter category does not play any role in identifying the order (1,1).
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Figure 2.15. Time plot and sample autocorrelation function of monthly log stock returns of

3M Company from February 1946 to December 2008.

serial correlations in the data at the 1% level. Table 2.5 shows the sample EACF and a
corresponding simplified table for the series, obtained via the SCA package. One can
also use the TSA package in R to compute EACF; see Remark below. The simplified
table is constructed using the following notation:

1. “X” denotes that the absolute value of the corresponding EACF is greater than
or equal to twice of its asymptotic standard error;

2. “O” denotes that the corresponding EACF is less than twice of its standard
error in modulus.

The standard error of EACF can be computed using either the Bartlett’s formula
of Section 2.2 or simply 2/

√
T with T being the sample size. The simplified table

exhibits a triangular pattern of “O” with its upper left vertex at the order (p, q) =
(0,0). A few exceptions of “X” appear when q = 2, 5, 9, and 11. However, the EACF
table shows that the values of sample ACF corresponding to those “X” are around
0.08 or 0.09. These ACFs are only slightly greater than 2/

√
755 = 0.073. Indeed, if

1% critical value is used, those “X” would become “O” in the simplified EACF table.
Consequently, the EACF suggests that the monthly log returns of 3M stock follow
an ARMA(0,0) model (i.e., a white noise series). This is in agreement with the result
suggested by the sample ACF in Figure 2.15.
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Remark. EACF is also available in R with the package TSA of Cryer and Chan
(2010). SCA uses the Bartlett’s formula to construct the simplified table, whereas
TSA uses 2/

√
T as the standard error of all EACF. For the 3M returns, R output is

given below: �

> da=read.table("m-3m4608.txt",header=T)
> head(da)

date rtn
1 19460228 -0.077922
> mmm=log(da$rtn+1)
> library(TSA) % Load the package
> m1=eacf(mmm,6,12) % Simplified table
AR/MA
0 1 2 3 4 5 6 7 8 9 10 11 12

0 o o x o o x o o o x o x o
1 x o x o o x o o o o o x o
2 x x x o o x o o o o o o o
3 x x x o o o o o o o o o o
4 x o x o o o o o o o o o o
5 x x x o x o o o o o o o o
6 x x x x x o o o o o o o o
> names(m1)
[1] "eacf" "ar.max" "ma.ma" "symbol"
> print(m1$eacf,digits=2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] -0.056 -0.038 -0.082 -0.005 0.018 0.0821 0.0080 0.0127 -0.0301
[2,] -0.474 0.010 -0.074 -0.021 0.002 0.0772 -0.0288 0.0026 -0.0068
[3,] -0.383 -0.348 -0.074 0.016 -0.006 0.0772 0.0269 0.0120 0.0004
[4,] -0.177 0.138 0.384 -0.022 0.002 0.0419 -0.0232 0.0154 -0.0044
[5,] 0.421 0.029 0.454 -0.008 0.001 0.0025 -0.0140 0.0305 0.0116
[6,] -0.114 0.214 0.449 0.010 0.202 -0.0063 -0.0038 0.0403 -0.0129
[7,] -0.208 -0.250 0.243 0.311 0.168 -0.0388 -0.0034 0.0429 -0.0101

[,10] [,11] [,12] [,13]
[1,] -0.078 0.0488 0.0909 -0.011
[2,] -0.069 0.0372 0.0938 -0.024
[3,] -0.027 0.0221 0.0428 0.042
[4,] -0.025 0.0185 0.0100 0.043
[5,] 0.004 0.0191 -0.0043 0.013
[6,] -0.012 0.0315 0.0117 0.028
[7,] -0.026 0.0078 0.0106 0.037

The information criteria discussed earlier can also be used to select the order of
an ARMA model. Typically, for some prespecified positive integers P and Q , one
computes AIC (or BIC) for ARMA(p, q) models, where 0 ≤ p ≤ P and 0 ≤ q ≤ Q ,
and selects the model that gives the minimum AIC (or BIC). This approach requires
maximum likelihood estimation of many models, and in some cases may encounter
the difficulty of overfitting in estimation.

Once an ARMA(p, q) model is specified, its parameters can be estimated by either
the conditional or exact likelihood method. In addition, the Ljung–Box statistics of
the residuals can be used to check the adequacy of a fitted model. If the model is
correctly specified, then Q(m) follows asymptotically a chi-squared distribution with
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m − g degrees of freedom, where g denotes the number of AR or MA coefficients
fitted in the model.

2.6.4 Forecasting Using an ARMA Model

Similar to the behavior of ACF, forecasts of an ARMA(p, q) model have similar
characteristics as those of an AR(p) model after adjusting for the impacts of the MA
component on the lower horizon forecasts. Denote the forecast origin by h and the
available information by Fh . The 1-step ahead forecast of xh+1 can be easily obtained
from the model as

x̂h(1) = E (xh+1|Fh) = φ0 +
p∑

i=1

φi xh+1−i −
q∑

i=1

θi ah+1−i ,

and the associated forecast error is eh(1) = xh+1 − x̂h(1) = ah+1. The variance of
1-step ahead forecast error is Var[eh(1)] = σ 2

a . For the �-step ahead forecast, we have

x̂h(�) = E (xh+�|Fh) = φ0 +
p∑

i=1

φi x̂h(� − i ) −
q∑

i=1

θi ah(� − i ),

where it is understood that x̂h(� − i ) = xh+�−i if � − i ≤ 0 and ah(� − i ) = 0 if
� − i > 0 and ah(� − i ) = ah+�−i if � − i ≤ 0. Thus, the multistep ahead forecasts
of an ARMA model can be computed recursively. The associated forecast error is

eh(�) = xh+� − x̂h(�),

which can be computed easily via a formula to be given below in Equation (2.35).

2.6.5 Three Model Representations for an ARMA Model

In this section, we briefly discuss three model representations for a stationary
ARMA(p, q) model. The three representations serve three different purposes.
Knowing these representations can lead to a better understanding of the model. The
first representation is the ARMA(p, q) model in Equation (2.29). This representation
is compact and useful in parameter estimation. It is also useful in computing
recursively multistep ahead forecasts of xt ; see the discussion in the previous section.

For the other two representations, we use long division of two polynomials. Given
two polynomials φ(B) = 1 − ∑p

i=1 φi B
i and θ(B) = 1 − ∑q

i=1 θi B
i , we can obtain,

by long division, that

θ(B)

φ(B)
= 1 + ψ1B + ψ2B2 + · · · ≡ ψ(B) (2.30)

and

φ(B)

θ(B)
= 1 − π1B − π2B2 − · · · ≡ π(B). (2.31)
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For instance, if φ(B) = 1 − φ1B and θ(B) = 1 − θ1B , then

ψ(B) = 1 − θ1B

1 − φ1B
= 1 + (φ1 − θ1)B + φ1(φ1 − θ1)B

2 + φ2
1(φ1 − θ1)B

3 + · · ·

π(B) = 1 − φ1B

1 − θ1B
= 1 − (φ1 − θ1)B − θ1(φ1 − θ1)B

2 − θ2
1 (φ1 − θ1)B

3 − · · · .

From the definition, ψ(B)π(B) = 1. Making use of the fact that Bc = c for any
constant (because the value of a constant is time invariant), we have

φ0

θ(1)
= φ0

1 − θ1 − · · · − θq
and

φ0

φ(1)
= φ0

1 − φ1 − · · · − φp
.

AR Representation. Using the result of long division in Equation (2.31), the
ARMA(p, q) model can be written as

xt = φ0

1 − θ1 − · · · − θq
+ π1xt−1 + π2xt−2 + π3xt−3 + · · · + at . (2.32)

This representation shows the dependence of the current return xt on the past returns
xt−i , where i > 0. The coefficients {πi } are referred to as the π-weights of an ARMA
model. To show that the contribution of the lagged value xt−i to xt is diminishing as i
increases, the πi coefficient should decay to 0 as i increases. An ARMA(p, q) model
that has this property is said to be invertible. For a pure AR model, θ(B) = 1 so that
π(B) = φ(B), which is a finite-degree polynomial. Thus, πi = 0 for i > p, and the
model is invertible. For other ARMA models, a sufficient condition for invertibility
is that all the zeros of the polynomial θ(B) are greater than unity in modulus. For
example, consider the MA(1) model xt = (1 − θ1B)at . The zero of the first-order poly-
nomial 1 − θ1B is B = 1/θ1. Therefore, an MA(1) model is invertible if |1/θ1| > 1.
This is equivalent to |θ1| < 1.

From the AR representation in Equation (2.32), an invertible ARMA(p, q) series
xt is a linear combination of the current shock at and a weighted average of the past
values. The weights decay exponentially for more remote past values.

MA Representation. Again, using the result of long division in Equation (2.30),
an ARMA(p, q) model can also be written as

xt = μ + at + ψ1at−1 + ψ2at−2 + · · · = μ + ψ(B)at , (2.33)

where μ = E (xt ) = φ0/(1 − φ1 − · · · − φp). This representation shows explicitly the
impact of the past shock at−i (i > 0) on the current return xt . The coefficients {ψi }
are referred to as the impulse response function of the ARMA model. For a weakly
stationary series, the ψi coefficients decay exponentially as i increases. This is under-
standable as the effect of shock at−i on the return xt should diminish over time. Thus,
for a stationary ARMA model, the shock at−i does not have a permanent impact on
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the series. If φ0 �= 0, then the MA representation has a constant term, which is the
mean of xt (i.e., φ0/(1 − φ1 − · · · − φp)).

The MA representation in Equation (2.33) is also useful in computing the variance
of a forecast error. At the forecast origin h , we have the shocks ah , ah−1, . . . Therefore,
the �-step ahead point forecast is

x̂h(�) = μ + ψ�ah + ψ�+1ah−1 + · · · , (2.34)

and the associated forecast error is

eh(�) = ah+� + ψ1ah+�−1 + · · · + ψ�−1ah+1.

Consequently, the variance of �-step ahead forecast error is

Var[eh(�)] = (1 + ψ2
1 + · · · + ψ2

�−1)σ
2
a , (2.35)

which, as expected, is a nondecreasing function of the forecast horizon �.
Finally, the MA representation in Equation (2.33) provides a simple proof of mean

reversion of a stationary time series. The stationarity implies that ψi approaches 0,
as i → ∞. Therefore, by Equation (2.34), we have x̂h(�) → μ, as � → ∞. Because
x̂h(�) is the conditional expectation of xh+� at the forecast origin h , the result says that
in the long term, the return series is expected to approach its mean, that is, the series is
mean reverting. Furthermore, using the MA representation in Equation (2.33), we have
Var(xt ) = (1 + ∑∞

i=1 ψ2
i )σ 2

a . Consequently, by Equation (2.35), we have Var[eh(�)]
→ Var(xt ), as � → ∞. The speed by which r̂h(�) approaches μ determines the speed
of mean reverting.

2.7 UNIT-ROOT NONSTATIONARITY

So far, we have focused on the return series that are stationary. In some studies,
interest rates, foreign exchange rates, or the price series of an asset are of interest.
These series tend to be nonstationary. For a price series, the nonstationarity is mainly
due to the fact that there is no fixed level for the price. In the time series literature, such
a nonstationary series is called unit-root nonstationary time series . The best-known
example of unit-root nonstationary time series is the random walk model.

2.7.1 Random Walk

A time series {pt } is a random walk if it satisfies

pt = pt−1 + at , (2.36)

where p0 is a real number denoting the starting value of the process and {at } is a
white noise series. If pt is the log price of a particular stock at date t , then p0 could
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be the log price of the stock at its initial public offering (i.e., the logged IPO price).
If at has a symmetric distribution around 0, then conditional on pt−1, pt has a 50–50
chance to go up or down, implying that pt would go up or down at random. If we
treat the random walk model as a special AR(1) model, then the coefficient of pt−1
is unity, which does not satisfy the weak stationarity condition of an AR(1) model.
A random walk series is, therefore, not weakly stationary, and we call it a unit-root
nonstationary time series.

The random walk model has been widely considered as a statistical model for
the movement of logged stock prices. Under such a model, the stock price is not
predictable or mean reverting. To see this, the 1-step ahead forecast of model (Eq 2.36)
at the forecast origin h is

p̂h(1) = E (ph+1|ph , ph−1, . . .) = ph ,

which is the log price of the stock at the forecast origin. Such a forecast has no
practical value. The 2-step ahead forecast is

p̂h(2) = E (ph+2|ph , ph−1, . . .) = E (ph+1 + ah+2|ph , ph−1, . . .)

= E (ph+1|ph , ph−1, . . .) = p̂h(1) = ph ,

which again is the log price at the forecast origin. In fact, for any forecast horizon
�> 0, we have

p̂h(�) = ph .

Thus, for all forecast horizons, point forecasts of a random walk model are simply the
value of the series at the forecast origin. Therefore, the process is not mean reverting.

The MA representation of the random walk model in Equation (2.36) is

pt = at + at−1 + at−2 + · · · .

This representation has several important practical implications. First, the �-step ahead
forecast error is

eh(�) = ah+� + · · · + ah+1,

so that Var[eh(�)] = �σ 2
a , which diverges to infinity as � → ∞. The length of an

interval forecast of ph+� will approach infinity as the forecast horizon increases. This
result says that the usefulness of point forecast p̂h(�) diminishes as � increases, which
again implies that the model is not predictable. Second, the unconditional variance of
pt is unbounded because Var[eh(�)] approaches infinity as � increases. Theoretically,
this means that pt can assume any real value for a sufficiently large t . For the log price
pt of an individual stock, this is plausible. Yet for market indexes, negative log price
is very rare if it happens at all. In this sense, the adequacy of a random walk model
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for market indexes is questionable. Third, from the representation, ψi = 1, for all i .
Thus, the impact of any past shock at−i on pt does not decay over time. Consequently,
the series has a strong memory as it remembers all of the past shocks. In economics,
the shocks are said to have a permanent effect on the series. The strong memory of
a unit-root time series can be seen from the sample ACF of the observed series. The
sample ACFs are all approaching 1 as the sample size increases.

2.7.2 Random Walk with Drift

As shown by empirical examples considered so far, the log return series of a market
index tends to have a small and positive mean. This implies that the model for the
log price is

pt = μ + pt−1 + at , (2.37)

where μ = E (pt − pt−1) and {at } is a zero-mean white noise series. The constant
term μ of model (Eq. 2.37) is very important in financial study. It represents the time
trend of the log price pt and is often referred to as the drift of the model. To see this,
assume that the initial log price is p0. Then, we have

p1 = μ + p0 + a1

p2 = μ + p1 + a2 = 2μ + p0 + a2 + a1

... = ...

pt = tμ + p0 + at + at−1 + · · · + a1.

The last equation shows that the log price consists of a time trend tμ and a pure random
walk process

∑t
i=1 ai . Because Var(

∑t
i=1 ai ) = tσ 2

a , where σ 2
a is the variance of at ,

the conditional standard deviation of pt is
√

tσa , which grows at a slower rate than
the conditional expectation of pt . Therefore, if we graph pt against the time index
t , we have a time trend with slope μ. A positive slope μ implies that the log price
eventually goes to infinity. In contrast, a negative μ implies that the log price would
converge to −∞ as t increases. On the basis of the above discussion, it is then not
surprising to see that the log return series of the CRSP value- and equal-weighted
indexes have a small, but statistically significant, positive mean.

To illustrate the effect of the drift parameter on the price series, we consider
the monthly log stock returns of the 3M Company from February 1946 to December
2008. As shown by the sample EACF in Table 2.5, the series has no significant serial
correlation. The series thus follows the simple model

xt = 0.0103 + at , σ̂a = 0.0637, (2.38)

where 0.0103 is the sample mean of xt and has a standard error 0.0023. The mean
of the monthly log returns of 3M stock is, therefore, significantly different from 0 at
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TABLE 2.5. Sample Extended Autocorrelation Function and a Simplified Table for the
Monthly Log Returns of 3M Stock from February 1946 to December 2008

(a) Sample Extended Autocorrelation Function

MA Order: q

p 0 1 2 3 4 5 6 7 8 9 10 11 12

0 −0.06 −0.04 −0.08 −0.00 0.02 0.08 0.01 0.01 −0.03 −0.08 0.05 0.09 −0.01
1 −0.47 0.01 −0.07 −0.02 0.00 0.08 −0.03 0.00 −0.01 −0.07 0.04 0.09 −0.02
2 −0.38 −0.35 −0.07 0.02 −0.01 0.08 0.03 0.01 0.00 −0.03 0.02 0.04 0.04
3 −0.18 0.14 0.38 −0.02 0.00 0.04 −0.02 0.02 −0.00 −0.03 0.02 0.01 0.04
4 0.42 0.03 0.45 −0.01 0.00 0.00 −0.01 0.03 0.01 0.00 0.02 −0.00 0.01
5 −0.11 0.21 0.45 0.01 0.20 −0.01 −0.00 0.04 −0.01 −0.01 0.03 0.01 0.03
6 −0.21 −0.25 0.24 0.31 0.17 −0.04 −0.00 0.04 −0.01 −0.03 0.01 0.01 0.04

(b) Simplified EACF Table

MA Order: q

p 0 1 2 3 4 5 6 7 8 9 10 11 12

0 O O X O O X O O O X O X O
1 X O O O O X O O O O O X O
2 X X O O O X O O O O O O O
3 X X X O O O O O O O O O O
4 X O X O O O O O O O O O O
5 X X X O X O O O O O O O O
6 X X X X X O O O O O O O O

the 1% level. As a matter of fact, the one-sample test of zero mean shows a t-ratio of
4.44 with p-value close to 0. We use the log return series to construct two log price
series, namely,

pt =
t∑

i=1

xi and p∗
t =

t∑
i=1

ai ,

where ai is the mean-corrected log return in Equation (2.38) (i.e., at = xt − 0.0103).
The pt is the log price of 3M stock, assuming that the initial log price is 0 (i.e., the
log price of January 1946 was 0). The p∗

t is the corresponding log price if the mean of
log returns was 0. Figure 2.16 shows the time plots of pt and p∗

t , as well as a straight
line yt = 0.0103 × t + 1946, where t is the time sequence of the returns and 1946 is
the starting year of the stock. From the plots, the importance of the constant 0.0103
in Equation (2.38) is evident. In addition, as expected, it represents the slope of the
upward trend of pt .

Interpretation of the Constant Term. From the previous discussions, it is
important to understand the meaning of a constant term in a time series model. First,
for an MA(q) model in Equation (2.22), the constant term is simply the mean of the
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Figure 2.16. Time plots of log prices for 3M stock from February 1946 to December 2008,

assuming that the log price of January 1946 was 0. The ‘‘o’’ line is for log price without time

trend. The straight line is yt = 0.0103 × t + 1946.

series. Second, for a stationary AR(p) model in Equation (2.9) or ARMA(p, q) model
in Equation (2.29), the constant term is related to the mean via μ = φ0/(1 − φ1 −
· · · − φp). Third, for a random walk with drift, the constant term becomes the time
slope of the series. These different interpretations for the constant term in a time series
model clearly highlight the difference between dynamic and usual linear regression
models.

Another important difference between dynamic and regression models is shown
by an AR(1) model and a simple linear regression model,

xt = φ0 + φ1xt−1 + at and yt = β0 + β1xt + at .

For the AR(1) model to be meaningful, the coefficient φ1 must satisfy |φ1| ≤ 1. How-
ever, the coefficient β1 can assume any fixed real number.

2.7.3 Trend-Stationary Time Series

A closely related model that exhibits linear trend is the trend-stationary time series
model,

pt = β0 + β1t + xt ,

where xt is a stationary time series, for example, a stationary AR(p) series. Here, pt
grows linearly in time with rate β1 and hence can exhibit behavior similar to that of
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a random walk model with drift. However, there is a major difference between the
two models. To see this, suppose that p0 is fixed. The random walk model with drift
assumes that the mean E (pt ) = p0 + μt and variance Var(pt ) = tσ 2

a , both of them
are time dependent. On the other hand, the trend-stationary model assumes the mean
E (pt ) = β0 + β1t , which depends on time, and variance Var(pt ) = Var(xt ), which
is finite and time invariant. The trend-stationary series can be transformed into a
stationary one by removing the time trend via a simple linear regression analysis. For
analysis of trend-stationary time series, see the method described in Section 2.10.

2.7.4 General Unit-Root Nonstationary Models

Consider an ARMA model. If one extends the model by allowing the AR polynomial to
have 1 as a characteristic root, then the model becomes the well-known autoregressive
integrated moving average (ARIMA) model. An ARIMA model is said to be unit-root
nonstationary because its AR polynomial has a unit root. Similar to a random walk
model, an ARIMA model has strong memory because the ψi coefficients in its MA
representation do not decay over time to 0, implying that the past shock at−i of the
model has a permanent effect on the series. A conventional approach for handling
unit-root nonstationarity is to use differencing .

Differencing. A time series yt is said to be an ARIMA(p, 1, q) process if
the change series ct = yt − yt−1 = (1 − B)yt follows a stationary and invertible
ARMA(p, q) model. In finance, price series are commonly believed to be nonstation-
ary, but the log return series, xt = ln(Pt ) − ln(Pt−1), is stationary. In this case, the log
price series is unit-root nonstationary and hence can be treated as an ARIMA process.
The idea of transforming a nonstationary series into a stationary one by considering
its change series is called differencing in the time series literature. More formally, ct
= yt − yt−1 is referred to as the first differenced series of yt . In some scientific fields,
a time series yt may contain multiple unit roots and needs to be differenced multiple
times to become stationary. For example, if both yt and its first differenced series
ct = yt − yt−1 are unit-root nonstationary, but st = ct − ct−1 = yt − 2yt−1 + yt−2 is
weakly stationary, then yt has double unit roots, and st is the second differenced series
of yt . In addition, if st follows an ARMA(p, q) model, then yt is an ARIMA(p, 2, q)
process. For such a time series, if st has a nonzero mean, then yt has a quadratic time
function and the quadratic time coefficient is related to the mean of st . The seasonally
adjusted series of US quarterly GDP implicit price deflator might have double unit
roots. However, the mean of the second differenced series is not significantly different
from 0; see Exercises of the chapter. Box et al. (1994) discuss many properties of
general ARIMA models.

2.7.5 Unit-Root Test

To test whether the log price pt of an asset follows a random walk or a random walk
with drift, we employ the models

pt = φ1pt−1 + et , (2.39)



92 LINEAR MODELS FOR FINANCIAL TIME SERIES

pt = φ0 + φ1pt−1 + et , (2.40)

where et denotes the error term, and consider the null hypothesis H0 : φ1 = 1 ver-
sus the alternative hypothesis Ha : φ1 < 1. This is the well-known unit-root testing
problem (Dickey and Fuller, 1979). A convenient test statistic is the t ratio of the LS
estimate of φ1 under the null hypothesis. For Equation (2.39), the LS method gives

φ̂1 =
∑T

t=1 pt−1pt∑T
t=1 p2

t−1

, σ̂ 2
e =

∑T
t=1(pt − φ̂1pt−1)

2

T − 1
,

where p0 = 0 and T is the sample size. The t ratio is

DF ≡ t-ratio = φ̂1 − 1

std(φ̂1)
=

∑T
t=1 pt−1et

σ̂e

√∑T
t=1 p2

t−1

,

which is commonly referred to as the Dickey–Fuller test . If {et } is a white noise series
with finite moments of order slightly greater than 2, then the DF-statistic converges
to a function of the standard Brownian motion as T → ∞; see Chan and Wei (1988)
and Phillips (1987) for more information. If φ0 is 0 but Equation (2.40) is employed
anyway, then the resulting t-ratio for testing φ1 = 1 will converge to another non-
standard asymptotic distribution. In either case, simulation is used to obtain critical
values of the test statistics; see Fuller (1995, Chapter 8) for selected critical values.
Yet if φ0 �= 0 and Equation (2.40) is used, then the t ratio for testing φ1 = 1 is asymp-
totically normal. However, large sample sizes are needed for the asymptotic normal
distribution to hold.

For many economic time series, ARIMA(p, d , q) models might be more appro-
priate than the simple model used in Equation (2.40). In the econometric literature,
AR(p) models are often used. The series is denoted by xt . To verify the existence of a
unit root in an AR(p) process, one may perform the test H0 : β = 1 versus Ha : β < 1
using the regression

xt = ct + βxt−1 +
p−1∑
i=1

φi �xt−i + et , (2.41)

where ct is a deterministic function of the time index t and �xj = xj − xj−1 is the
differenced series of xt . In practice, ct can be 0 or a constant or ct = ω0 + ω1t . The
t-ratio of β̂ − 1,

ADF-test = β̂ − 1

std(β̂)
,

where β̂ denoting the LS estimate of β is the well-known augmented Dickey–Fuller
unit-root test. Note that because of the first differencing, Equation (2.41) is equiva-
lent to an AR(p) model with deterministic function ct . Equation (2.41) can also be
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rewritten as

�xt = ct + βcxt−1 +
p−1∑
i=1

φi �xt−i + et ,

where βc = β − 1. One can then test the equivalent hypothesis H0 : βc = 0 versus
Ha : βc < 0.

Example 2.4. Consider the log series of US quarterly GDP from 1947.I to 2008.IV.
The series exhibits an upward trend, showing the growth of US economy and has
high sample serial correlations; see the lower-left panel of Figure 2.17. The first dif-
ferenced series, representing the growth rate of US GDP and also shown in Figure 2.17,
seems to vary around a fixed mean level, even though the variability appears to be
smaller in recent years. To confirm the observed phenomenon, we apply the augmented
Dicky–Fuller unit-root test to the log series. On the basis of the sample PACF of the
differenced series shown in Figure 2.17, we choose p = 10. Other values of p are
also used, but they do not alter the conclusion of the test. With p = 10, ADF-test
statistic is −1.611 with p-value 0.457, indicating that the unit-root hypothesis cannot
be rejected. �
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Figure 2.17. Log series of US quarterly GDP from 1947.I to 2008.IV: (a) Time plot the the

logged GDP series, (b) sample ACF of the log GDP data, (c) time plot of the first differenced

series, and (d) sample PACF of the differenced series.
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> library(fUnitRoots)
> da=read.table("q-gdp4708.txt",header=T)
> gdp=log(da[,4])
> m1=ar(diff(gdp),method=‘mle’)
> m1$order
[1] 10
> adfTest(gdp,lags=10,type=c("c"))
Title:
Augmented Dickey--Fuller Test

Test Results:
PARAMETER:

Lag Order: 10
STATISTIC:

Dickey-Fuller: -1.6109
P-VALUE: 0.4569

As another example, consider the log series of the S&P 500 index from January
3, 1950 to April 16, 2008 for 14,462 observations. The series is shown in Figure 2.18.
Testing for a unit root in the index is relevant if one wishes to verify empirically
that the Index follows a random walk with drift. To this end, we use ct = ω0 +
ω1t in applying the augmented Dickey–Fuller test. Furthermore, we choose p = 15
based on the sample PACF of the first differenced series. The resulting test statistic
is −1.995 with p-value 0.581. Thus, the unit-root hypothesis cannot be rejected at
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Figure 2.18. Time plot of the logarithm of daily S&P 500 index from January 3, 1950 to April

16, 2008.
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any reasonable significance level. Further analysis shows that the constant term is
statistically significant, whereas the estimate of the time trend is not at the usual 5%
level. In summary, for the period from January 1950 to April 2008, the log series of
the S&P 500 index contains a unit root and a positive drift, but there is no strong
evidence of a time trend.

> library(fUnitRoots)
> da=read.table("d-sp55008.txt",header=T)
> sp5=log(da[,7])
> m2=ar(diff(sp5),method=’mle’) % Based on AIC
> m2$order
[1] 2
> adfTest(sp5,lags=2,type=("ct"))
Title:
Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
Lag Order: 2

STATISTIC:
Dickey-Fuller: -2.0179

P-VALUE: 0.5708

> adfTest(sp5,lags=15,type=("ct")) % Based on PACF
Title:
Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
Lag Order: 15

STATISTIC:
Dickey-Fuller: -1.9946

P-VALUE: 0.5807

> dsp5=diff(sp5)
> tdx=c(1:length(dsp5))
> m3=arima(dsp5,order=c(2,0,0),xreg=tdx)
> m3
Call: arima(x = dsp5,order=c(2,0,0),xreg = tdx)
Coefficients:

ar1 ar2 intercept tdx
0.0721 -0.0387 4e-04 0

s.e. 0.0083 0.0083 2e-04 0
sigma^2 estimated as 8.1e-05:log likelihood=48287,aic=-96564
> m3$coef

ar1 ar2 intercept tdx
7.214122e-02 -3.868823e-02 3.513995e-04 -7.165372e-09

> sqrt(diag(m3$var.coef))
ar1 ar2 intercept tdx
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8.307510e-03 8.285669e-03 1.537309e-04 8.349685e-06
> tratio=m3$coef/sqrt(diag(m3$var.coef))
> tratio

ar1 ar2 intercept tdx
8.6838549 -4.6692947 2.2858091 -0.0008582

2.8 EXPONENTIAL SMOOTHING

A commonly used method in forecasting is the exponential smoothing. Consider the
1-step ahead forecast of a time series xt . Suppose that the forecast origin is h and
all past data are available. Under the general belief that the serial dependence of xt
decays exponentially, one can use a weighted average of the past data to predict xh+1
with weights decaying exponentially. Specifically, one employs a quantity as

x̂h+1 ∝ wxh + w2xh−1 + w3xh−2 + · · ·

=
∞∑

j=1

w j xh+1−j ,

where w is a positive real number in (0,1) referred to as the discounting rate. However,
as one does not want to change the scale of xt , it is necessary that the sum of the
weights is equal to 1. Using properties of a geometric series, it is easy to see that∑∞

j=1 wi = 1
1−w

. Therefore, a proper way to use weighted average is

x̂h(1) = (1 − w)[wxh + w2xh−1 + w3xh−2 + · · ·]. (2.42)

This technique to produce forecasts is called the exponential smoothing method . It
has been widely used in practice because the technique says that more recent data
contribute more in predicting xh+1.

It turns out that the exponential smoothing is a special case of the ARIMA models.
Specifically, consider the ARIMA(0,1,1) model

(1 − B)xt = (1 − θB)at ,

where θ ∈ (0, 1). Using the AR representation in Section 2.6.5, this model implies
that

xh+1 = (1 − θ)[θxh + θ2xh−1 + θ3xh−2 + · · ·] + ah+1.

Therefore, the 1-step ahead forecast is

x̂h(1) = (1 − θ)[θxh + θ2xh−1 + θ3xh−2 + · · ·].

This is precisely the exponential smoothing in Equation (2.42), with θ = w.
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Treating exponential smoothing as a special ARIMA(0,1,1) model has several
advantages. First, the discounting parameter θ can be estimated via the maximum
likelihood method. Second, one can identify and check the adequacy of the exponential
smoothing method via the model building procedure of ARIMA models.

Example 2.5. Consider the daily volatility index (VIX) of Chicago Board Options
Exchange (CBOE) from May 1, 2008 to April 19, 2010. The data are obtained from
the CBOE web. Figure 2.19 shows the time plot of the logarithm of the VIX index and
the sample ACFs of the differenced series. Since only the lag-1 ACF is significantly
different from 0 at the 5% level, an MA(1) model is identified for the differenced
series. Let xt = ln(VIXt ). The fitted model is

(1 − B)xt = (1 − 0.163B)at , σ̃ 2
a = 0.0044.

The Ljung–Box statistics of the residuals shows that the fitted ARIMA(0,1,1) model
is adequate. For instance, we have Q(10) = 14.25 with p-value 0.11, based on a
chi-squared distribution with 9 degrees of freedom. Consequently, in this particular
instance, one can employ the exponential smoothing to predict the log series of daily
VIX index. �
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Figure 2.19. Log series of daily VIX index of Chicago Board Options Exchange from May 1,

2008 to April 19, 2010: (a) time plot of log VIX and (b) sample ACFs of the differenced series

of log VIX.
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R Demonstration

> da=read.table("d-vix0810.txt",header=T)
> vix=log(da$Close)
> length(vix)
[1] 496
> m1=arima(vix,order=c(0,1,1))
> m1
Call:
arima(x = vix, order = c(0, 1, 1))

Coefficients:
ma1

-0.1629
s.e. 0.0497

sigma^2 estimated as 0.004429: log likelihood=638.97, aic=-1273.94
>
> Box.test(m1$residuals,lag=10,type=’Ljung’)

Box-Ljung test

data: m1$residuals
X-squared = 14.2536, df = 10, p-value = 0.1617

> pp=1-pchisq(14.25,9)
> pp
[1] 0.1137060

Finally, one can extend the argument used in this section to show that the double
exponential smoothing method for forecasting is a special case of the ARIMA(0,2,2)
model.

2.9 SEASONAL MODELS

Some financial time series such as quarterly earnings per share of a company exhibits
certain cyclical or periodic behavior. This type of series is called a seasonal time
series . Recall that Figure 2.2 shows the time plot of quarterly earnings per share
of the Coca-Cola Company from the first quarter of 1983 to the third quarter of
2009. The seasonal pattern is clearly seen. A careful examination of the plot shows
that the quarterly earnings had a strong seasonality, grew exponentially during the
sample period, and were subject to some disturbance in the late 1990s. The sea-
sonal pattern repeats itself every year so that the periodicity of the series is 4.
If monthly data are considered (e.g., monthly sales of Wal-Mart Stores), then the
periodicity is 12.

Seasonal time series is also highly relevant in empirical studies of the prices of
weather-related derivatives and energy futures. It is well known that most environ-
mental time series exhibits strong seasonal behavior.

Analysis of seasonal time series has a long history. In some applications,
seasonality is of secondary importance and is removed from the data, resulting in
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a seasonally adjusted time series that is then used to make inference. The procedure
to remove seasonality from a time series is referred to as seasonal adjustment .
Several methods are available. See, for instance, Peña et al. (2001, Chapter 8) and
the references therein. Most economic data published by the US government are
seasonally adjusted (e.g., the growth rate of GDP and the unemployment rate).
In other applications such as forecasting, seasonality is as important as other
characteristics of the data and must be handled accordingly. Because forecasting is a
major objective of financial time series analysis, we focus on analyzing directly the
seasonal time series. Our goal is to discuss some econometric models and methods
that are useful in modeling seasonal time series.

2.9.1 Seasonal Differencing

Figure 2.20 shows the time plot of log earnings per share of the Coca-Cola Company.
We took the log transformation for two reasons. First, it is used to handle the expo-
nential growth of the series. Indeed, the plot shows that the log earnings increased
linearly and the linear trend continued even after the 1998 disturbance, albeit with
a different rate. Second, the transformation is used to stabilize the variability of the
series. Compared with Figure 2.2, the increasing pattern in variability of quarterly
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Figure 2.20. Time plot of quarterly earnings per share of the Coca-Cola from 1983.I to 2009.III:

log earnings.
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earnings disappears after the transformation. In fact, log transformation is commonly
used in analysis of financial and economic time series. In this particular instance, all
earnings are positive so that no adjustment is needed before taking the transformation.
In some cases, one may need to add a positive constant to every data point before
taking the transformation.

The log earnings are denoted by xt . The upper left panel of Figure 2.21 shows the
sample ACF of xt , which suggests that the series of quarterly log earnings has strong
serial correlations. A conventional method to handle such strong serial correlations
is to consider the first differenced series of xt (i.e., �xt = xt − xt−1 = (1 − B)xt ).
Differencing is a commonly used method to induce stationarity in time series analysis.
The top panel of Figure 2.22 shows the time plot of �xt . From the plot, we see that (a)
the differencing successfully removes the upward trend of the data and (b) the series
now shows a very strong seasonal pattern. The lower-left plot of Figure 2.21 gives
the sample ACF of �xt . The autocorrelations are large at lags, which are multiples of
the periodicity 4. In addition, these seasonal autocorrelations decay slowly. What we
observe here is a well-documented behavior of the sample ACF of a seasonal time
series. Following the procedure of Box et al. (1994, Chapter 9), we take a seasonal
difference of �xt to handle the strong seasonal pattern. Specifically, we consider

�4(�xt ) = (1 − B4)�xt = �xt − �xt−4 = xt − xt−1 − xt−4 + xt−5.

The operation �4 = (1 − B4) is called a seasonal differencing . In general, for a
seasonal time series yt with periodicity s , seasonal differencing means

�s yt = yt − yt−s = (1 − B s)yt .

Seasonal differencing is commonly used in business and finance. For example,
in reporting quarterly earnings of a company, news media often compare the
earnings with that of the same quarter one year earlier. The conventional difference
�yt = yt − yt−1 = (1 − B)yt is referred to as the regular differencing .

The lower panel of Figure 2.22 shows the time plot of �4�xt . The strong seasonal
pattern of �xt disappears. The lower right plot of Figure 2.21 shows the sample ACF
of �4�xt . From the ACF plot, we make the following observations:

1. The ACFs are negative and statistically significant at lags 1 and 4. That is, the
serial correlations are different from 0 at the regular and seasonal lags.

2. The ACF is positive and statistically significant at lag 5.

3. The ACF is positive and marginally significant at lag 3.

These observed characteristics are common among empirical seasonal time series
and lead to the development of multiplicative seasonal models introduced in the next
section. For completeness, Figure 2.21 also provides the sample ACF of the seasonally
differenced series �4xt , and the middle panel of Figure 2.22 shows associated time
plot.
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Figure 2.21. Sample ACF of the log series of quarterly earnings per share of the Coca-Cola

Company from 1983.I to 2009.III, where koeps is the log earnings, deps is the first differenced

series, sdeps is the seasonally differenced series, and ddeps denotes series with regular and

seasonal differencing. (a) Series koeps, (b) series sdeps, (c) series deps, and (d) series ddeps.

2.9.2 Multiplicative Seasonal Models

A statistical model whose autocorrelations possess the behavior shown by the sample
ACF of (1 − B4)(1 − B)xt in Figure 2.21 is the multiplicative seasonal model. A
simple multiplicative seasonal model assumes the form

(1 − B)(1 − Bs)xt = (1 − θB)(1 − �B s)at , (2.43)

where s is the periodicity of the series, at is a white noise series, |θ | < 1, and |�| < 1.
This model is referred to as the airline model in the literature (Box et al., 1994, Chapter
9). It has been found to be widely applicable in modeling seasonal time series. The
AR part of the model simply consists of the regular and seasonal differences, whereas
the MA part involves two parameters. Focusing on the MA part (i.e., on the model),

wt = (1 − θB)(1 − �Bs)at = at − θat−1 − �at−s + θ�at−s−1,
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Figure 2.22. Time plots of quarterly earnings per share of the Coca-Cola Company from 1983.I

to 2009.III. The top panel is for the first differenced series, the middle panel is for the seasonally

differenced series, and the lower panel is for the regularly and seasonally differenced series.

where wt = (1 − Bs)(1 − B)xt and s > 1. It is easy to obtain that E (wt ) = 0 and

Var(wt ) = (1 + θ2)(1 + �2)σ 2
a

Cov(wt , wt−1) = −θ(1 + �2)σ 2
a

Cov(wt , wt−s+1) = θ�σ 2
a

Cov(wt , wt−s ) = −�(1 + θ2)σ 2
a

Cov(wt , wt−s−1) = θ�σ 2
a

Cov(wt , wt−�) = 0, for � �= 0, 1, s − 1, s , s + 1.

Consequently, the ACF of the wt series is given by

ρ1 = −θ

1 + θ2
, ρs = −�

1 + �2
, ρs−1 = ρs+1 = ρ1ρs = θ�

(1 + θ2)(1 + �2)
,

and ρ� = 0 for �> 0 and � �= 1, s − 1, s , s + 1. For example, if wt is a quarterly time
series, then s = 4 and for �> 0, the ACF ρ� is nonzero at lags 1, 3, 4, and 5 only.
This is indeed the case for the log quarterly earnings of the Coca-Cola Company.
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It is interesting to compare the prior ACF with those of the MA(1) model yt =
(1 − θB)at and the MA(s) model zt = (1 − �Bs)at . The ACF of yt and zt series are

ρ1(y) = −θ

1 + θ2
, and ρ�(y) = 0, �> 1,

ρs(z ) = −�

1 + �2
, and ρ�(z ) = 0, �> 0, �= s .

We see that (i) ρ1 = ρ1(y), (ii) ρs = ρs(z ), and (iii) ρs−1 = ρs+1 = ρ1(y) × ρs(z ).
Therefore, the ACF of wt at lags (s − 1) and (s + 1) can be regarded as the interaction
between lag-1 and lag-s serial dependence, and the model of wt is called a multiplica-
tive seasonal MA model. In practice, a multiplicative seasonal model says that the
dynamics of the regular and seasonal components of the series are approximately
orthogonal.

The usefulness of the airline model in Equation (2.43) can be obtained by rewriting
the model as

1 − B

1 − θB

(
1 − B s

1 − �Bs
xt

)
= at .

Let yt = (1 − Bs)/(1 − �Bs)xt . Then, we have

(1 − B)yt = (1 − θB)at , (1 − Bs)xt = (1 − �B s)yt .

Here, yt is the exponential smoothing model of Section 2.8 and xt is another exponen-
tial smoothing model, but for the seasonal component. Thus, the airline model can be
regarded as an exponential smoothing model on top of another exponential smoothing
model. One exponential smoothing is for the usual serial dependence, whereas the
other one is for the seasonal dependence.

Example 2.6. In this example, we apply the airline model to the log series of quar-
terly earnings per share of Coca-Cola from 1983 to 2009. On the basis of the exact
likelihood method, the fitted model is

(1 − B)(1 − B4)xt = (1 − 0.4096B)(1 − 0.8203B4)at , σ̂ 2
a = 0.00724,

where standard errors of the two MA parameters are 0.0866 and 0.0743, respectively.
The Ljung–Box statistics of the residuals show Q(12) = 13.20 with p-value 0.35
when the degrees of freedom is 12. With adjustment to 10 degrees of freedom, the
p-value becomes 0.21. Figure 2.23 shows the model checking plots for the fitted airline
model. It consists of three plots. The top plot shows the standardized residuals. This
plot can be used to examine the iid assumption of the residuals and to spot possible
outliers in the data. The middle plot is the autocorrelations of the residuals. Ideally,
all the ACF of the residuals should be within the limit of two standard errors. The
bottom plot provides the p-values of the Ljung–Box statistics for several values of m .
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Figure 2.23. Model checking for the fitted Airline model to the log quarterly earnings of the

Coca-Cola Company from 1983 to 2009: (a) time plot of the standard residuals, (b) ACF of the

standardized residuals, and (c) plot of p-values of the Ljung–Box statistics of the standardized

residuals.

If the fitted model is adequate in describing the serial dependence of the data, then all
p-values should be greater than the type I error. The dashed line of the plot gives the
default type I error of 0.05. The number of m can be specified by the subcommand
gof of the command tsdiag. On the basis of the three plots, except for a possible
outlier at the end of 1999, the model appears to be adequate for the log quarterly
earnings of the Coca-Cola Company. �

To illustrate the forecasting performance of the fitted seasonal model, we rees-
timate the model using the first 100 observations, that is, from 1983 to 2007, and
reserve the last seven data points for forecasting evaluation. The fitted model becomes
(1 − B)(1 − B4)xt = (1 − 0.4209B)(1 − 0.8099B4)at with σ 2

a = 0.00743. We com-
pute 1-step to 7-step ahead forecasts and their standard errors of the fitted model at
the forecast origin h = 100. An antilog transformation is taken to obtain forecasts of
earnings per share using the relationship between normal and log-normal distributions
given in Chapter 1. Figure 2.24 shows the forecast performance of the model, where
the data are represented by solid line, observations during the forecasting period are
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Figure 2.24. Out-of-sample point and interval forecasts for the quarterly earnings of the

Coca-Cola Company. The forecast origin is the fourth quarter of 2007. In the plot, circles

represent the actual earnings in the forecasting period, asterisks represent point forecasts,

and dashed lines represent a 95% interval forecasts.

marked by “o,” point forecasts are indicated by “*,” and the dashed lines represent
95% interval forecasts. The forecasts show a strong seasonal pattern and are close to
the observed data. The actual earnings are all in the interval forecasts.

R Demonstration

> da=read.table("q-ko-earns8309.txt",header=T)
> head(da)

pends anntime value
1 19830331 19830426 0.0375
...
6 19840630 19840720 0.0583
> eps=log(da$value)
> koeps=ts(eps,frequency=4,start=c(1983,1))
> plot(koeps,type=’l’)
> points(koeps,pch=c1,cex=0.6)
% Obtain ACF plot
> par(mfcol=c(2,2))
> koeps=log(da$value)
> deps=diff(koeps)
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> sdeps=diff(koeps,4)
> ddeps=diff(sdeps)
> acf(koeps,lag=20)
> acf(deps,lag=20)
> acf(sdeps,lag=20)
> acf(ddeps,lag=20)
% Obtain time plots
> c1=c("2","3","4","1")
> c2=c("1","2","3","4")
> par(mfcol=c(3,1))
> plot(deps,xlab=’year’,ylab=’diff’,type=’l’)
> points(deps,pch=c1,cex=0.7)
> plot(sdeps,xlab=’year’,ylab=’sea-diff’,type=’l’)
> points(sdeps,pch=c2,cex=0.7)
> plot(ddeps,xlab=’year’,ylab=’dd’,type=’l’)
> points(ddeps,pch=c1,cex=0.7)
% Estimation
> m1=arima(koeps,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4))
> m1
Call:
arima(x=koeps,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4))
Coefficients:

ma1 sma1
-0.4096 -0.8203

s.e. 0.0866 0.0743

sigma^2 estimated as 0.00724: log likelihood = 104.25, aic = -202.5

> tsdiag(m1,gof=20) % model checking
> Box.test(m1$residuals,lag=12,type=’Ljung’)

Box-Ljung test
data: m1$residuals
X-squared = 13.3034, df = 12, p-value = 0.3474
> pp=1-pchisq(13.30,10)
> pp
[1] 0.2073788 % p-value
% Out-of-sample forecasting
> koeps=log(da$value)
> length(koeps)
[1] 107
> y=koeps[1:100]
> m1=arima(y,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4))
> m1
Coefficients:

ma1 sma1
-0.4209 -0.8099

s.e. 0.0874 0.0767

sigma^2 estimated as 0.007432: log likelihood = 95.78, aic = -185.57
% Prediction
> pm1=predict(m1,7)
> names(pm1)
[1] "pred" "se"
> pred=pm1$pred
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> se=pm1$se
% Anti-log transformation
> ko=da$value
> fore=exp(pred+se^2/2)
> v1=exp(2*pred+se^2)*(exp(se^2)-1)
> s1=sqrt(v1)
> eps=ko[80:107]
> length(eps)
[1] 28
> tdx=(c(1:28)+3)/4+2002
> upp=c(ko[100],fore+2*s1)
> low=c(ko[100],fore-2*s1)
> min(low,eps)
[1] 0.37
> max(upp,eps)
[1] 1.267623
> plot(tdx,eps,xlab=’year’,ylab=’earnings’,type=’l’,ylim=c(0.35,1.3))
> points(tdx[22:28],fore,pch=’*’)
> lines(tdx[21:28],upp,lty=2)
> lines(tdx[21:28],low,lty=2)
> points(tdx[22:28],ko[101:107],pch=’o’,cex=0.7)

In some applications, the multiplicative model

(1 − B)(1 − Bs)xt = (1 − θ1B − θ2B2)(1 − �Bs )at

is needed, especially when s > 4. Here, the nonzero ACFs of the differenced series
wt = (1 − B)(1 − Bs)xt may occur at lags 1, 2, s − 2, s − 1, s , s + 1, and s + 2. The
sample ACF of wt can be used to identify such a model.

The model

wt = (1 − θB − �Bs)at , (2.44)

where |θ | < 1 and |�| < 1, is a nonmultiplicative seasonal MA model. It is easy to
see that for the model in Equation (2.44), ρs+1 = 0. A multiplicative model is more
parsimonious than its nonmultiplicative counterpart because both models use the same
number of parameters, but the multiplicative model has more nonzero ACFs.

2.9.3 Seasonal Dummy Variable

When the seasonal pattern of a time series is stable over time (e.g., close to a determin-
istic function), dummy variables may be used to handle the seasonality. By seasonal
dummy variables, we mean the indicator variables for the seasons within a year. For
quarterly data, the dummy variables represent spring, summer, autumn and winter,
respectively, and three of them are used in an analysis. This approach is adopted by
some analysts. However, deterministic seasonality is a special case of the multiplica-
tive seasonal model discussed earlier. Specifically, if � = 1, then model (Eq. 2.43)
contains a deterministic seasonal component. Consequently, the same forecasts are
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obtained by using either dummy variables or a multiplicative seasonal model when
the seasonal pattern is deterministic. Yet, the use of dummy variables can lead to infe-
rior forecasts if the seasonal pattern is not deterministic. In practice, we recommend
that the exact likelihood method should be used to estimate a multiplicative seasonal
model, especially when the sample size is small or when there is the possibility of
having a deterministic seasonal component.

Example 2.7. To demonstrate the deterministic seasonal behavior, consider the
monthly simple returns of the CRSP Decile 1 Index from January 1970 to December
2008 for 468 observations. The series is shown in Figure 2.25a, and the time plot
does not show any clear pattern of seasonality. However, the sample ACF of the
return series shown in Figure 2.25b contains significant lags at 12, 24, and 36, as
well as lag 1. If seasonal ARMA models are entertained, a model in the form

(1 − φ1B)(1 − φ12B12)Xt = (1 − θ12B12)at

is identified, where Xt denotes the monthly simple return. After removing the insignif-
icant parameter, the fitted model becomes

(1 − 0.179B)(1 − 0.989B12)Xt = (1 − 0.913B12)at , σ̃ 2
a = 0.00472.
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Figure 2.25. Monthly simple returns of CRSP Decile 1 index from January 1970 to December

2008: (a) time plot of the simple returns, (b) sample ACF of the simple returns, (c) time plot

of the simple returns after adjusting for January effect, and (d) sample ACF of the adjusted

simple returns.
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The near cancellation between seasonal AR and MA factors is clearly seen. This
highlights the usefulness of using the exact likelihood method, and the estimation
result suggests that the seasonal behavior might be deterministic. To further confirm
this assertion, we define the dummy variable for January, that is,

Jant =
{

1 if t is January,

0 otherwise,

and employ the simple liner regression

Xt = β0 + β1 Jant + et .

The fitted model is Xt = 0.0029 + 0.1253Jant + et , where the standard errors of the
estimates are 0.0033 and 0.0115, respectively. The right panel of Figure 2.25 shows the
time plot and sample ACF of the residual series of the prior simple linear regression.
From the sample ACF, serial correlations at lags 12, 24, and 36 largely disappear,
suggesting that the seasonal pattern of the Decile 1 returns has been successfully
removed by the January dummy variable. Consequently, the seasonal behavior in the
monthly simple return of Decile 1 is mainly due to the January effect . �

R Demonstration. Output edited and % denotes explanation

> da=read.table("m-deciles08.txt",header=T)
> d1=da[,2]
> jan=rep(c(1,rep(0,11)),39) % Create January dummy.
> m1=lm(d1 ∼ jan)
> summary(m1)
lm(formula = d1 ∼ jan)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.002864 0.003333 0.859 0.391
jan 0.125251 0.011546 10.848 <2e-16 ***
---

Residual standard error: 0.06904 on 466 degrees of freedom
Multiple R-squared: 0.2016, Adjusted R-squared: 0.1999

> m2=arima(d1,order=c(1,0,0),seasonal=list(order=c(1,0,1),
+ period=12))
> m2
Coefficients:

ar1 sar1 sma1 intercept
0.1769 0.9882 -0.9144 0.0118 % insignificant intercept

s.e. 0.0456 0.0093 0.0335 0.0129

sigma^2 estimated as 0.004717: log likelihood=584.07, aic=-1158.14
> tsdiag(m2,gof=36) % plot not shown.

> m2=arima(d1,order=c(1,0,0),seasonal=list(order=c(1,0,1),
+ period=12),include.mean=F)
> m2
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Call:
arima(x=d1,order=c(1,0,0),seasonal=list(order=c(1,0,1),period=12),

include.mean = F)

Coefficients:
ar1 sar1 sma1

0.1787 0.9886 -0.9127 % All estimates are significant.
s.e. 0.0456 0.0089 0.0335

sigma^2 estimated as 0.00472: log likelihood=583.68, aic=-1159.36

2.10 REGRESSION MODELS WITH TIME SERIES ERRORS

In many applications, the relationship between two time series is of major interest.
An obvious example is the Market Model in finance that relates the excess return
of an individual stock to that of a market index. The term structure of interest rates
is another example in which the time evolution of the relationship between interest
rates with different maturities is investigated. These examples lead naturally to the
consideration of a linear regression in the form

yt = α + βxt + et , (2.45)

where yt and xt are two time series and et denotes the error term. The LS method is
often used to estimate model (Eq. 2.45). If {et } is a white noise series, then the LS
method produces consistent estimates. In practice, however, it is common to see that
the error term et is serially correlated. In this case, we have a regression model with
time series errors, and the LS estimates of α and β may not be consistent.

A regression model with time series errors is widely applicable in economics and
finance. Care must be exercised, however, as not to overlook the serial dependence
in et . It pays to study the model carefully.

We introduce the model by considering the relationship between two US weekly
interest rate series:

1. x1t : The 1-year treasury constant maturity rate,

2. x3t : The 3-year treasury constant maturity rate.

Both series have 2467 observations from January 5, 1962 to April 10, 2009 and
are measured in percentages. The series is obtained from the Federal Reserve Bank
of St Louis. Strictly speaking, we should model the two interest series jointly using
multivariate time series analysis (Tsay, 2010, Chapter 8). However, for simplicity, we
focus here on the regression type of analysis and ignore the issue of simultaneity.

Figure 2.26 shows the time plots of the two interest rates with solid line denoting
the 1-year rate and dashed line the 3-year rate. Figure 2.27a is the scatter plot between
x1t and x3t , indicating that, as expected, the two interest rates are highly correlated.
A naive way to describe the relationship between the two interest rates is to use the
simple model x3t = α + βx1t + et . This results in a fitted model

x3t = 0.832 + 0.930x1t + et , σ̂e = 0.523 (2.46)
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Figure 2.26. Time plots of US weekly interest rates (in percentages) from January 5, 1962 to

April 10, 2009. The solid line represents the treasury 1-year constant maturity rate and the

dashed line represents the treasury 3-year constant maturity rate.
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Figure 2.27. Scatter plots of US weekly interest rates from January 5, 1962 to April 10, 2009:

(a) 3-year rate versus 1-year rate and (b) changes in 3-year rate versus changes in 1-year rate.
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Figure 2.28. Residual series of linear regression (Eq 2.46) for two US weekly interest rates: (a)

time plot and (b) sample ACF.

with R2 = 96.5%, where the standard errors of the two coefficients are 0.024 and
0.004, respectively. Model (Eq. 2.46) confirms the high correlation between the two
interest rates. However, the model is seriously inadequate as shown by Figure 2.28,
which gives the time plot and ACF of its residuals. In particular, the sample ACF of
the residuals is highly significant and decays slowly, showing the pattern of a unit-root
nonstationary time series. The behavior of the residuals suggests that marked differ-
ences exist between the two interest rates. Using the modern econometric terminology,
if one assumes that the two interest rate series are unit-root nonstationary, then the
behavior of the residuals of Equation (2.46) indicates that the two interest rates are not
cointegrated ; see Tsay (2010, Chapter 8) for the discussion of cointegration. In other
words, the data fail to support the hypothesis that there exists a long-term equilibrium
between the two interest rates. In some sense, this is not surprising because the pattern
of “inverted yield curve” did occur during the data span. By inverted yield curve, we
mean the situation under which interest rates are inversely related to their time to
maturities.

The unit-root behavior of both interest rate series and the residuals of Equation
(2.46) leads to the consideration of the change series of interest rates. Let

1. c1t = x1t − x1,t−1 = (1 − B)x1t for t ≥ 2: changes in the 1-year interest rate;

2. c3t = x3t − x3,t−1 = (1 − B)x3t for t ≥ 2: changes in the 3-year interest rate,

and consider the linear regression c3t = βc1t + et . Figure 2.29 shows time plots of the
two change series, whereas Figure 2.27b provides a scatter plot between them. The
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Figure 2.29. Time plots of the change series of US weekly interest rates from January 12, 1962

to April 10, 2009: (a) changes in the treasury 1-year constant maturity rate and (b) changes in

the treasury 3-year constant maturity rate.

change series remain highly correlated with a fitted linear regression model given by

c3t = 0.792c1t + et , σ̂e = 0.0690, (2.47)

with R2 = 82.5%. The standard error of the coefficient is 0.0073. This model further
confirms the strong linear dependence between interest rates. Figure 2.30 shows the
time plot and sample ACF of the residuals of Equation (2.47). Once again, the ACF
shows some significant serial correlations in the residuals, but magnitudes of the
correlations are much smaller. This weak serial dependence in the residuals can be
modeled by using the simple time series models discussed in the previous sections,
and we have a linear regression with time series errors.

The main objective of this section is to discuss a simple approach for building a
linear regression model with time series errors. The approach is straightforward. We
employ a simple time series model discussed in this chapter for the residual series
and estimate the whole model jointly. For illustration, consider the simple linear
regression in Equation (2.47). Because residuals of the model are serially correlated,
we shall identify a simple ARMA model for the residuals. From the sample ACF of
the residuals shown in Figure 2.30, we specify an MA(1) model for the residuals and
modify the linear regression model to

c3t = βc1t + et , et = at − θ1at−1, (2.48)
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Figure 2.30. Residual series of the linear regression (Eq 2.47) for two change series of US

weekly interest rates: (a) time plot and (b) sample ACF.

where {at } is assumed to be a white noise series. In other words, we simply use an
MA(1) model, without the constant term, to capture the serial dependence in the error
term of Equation (2.47). The resulting model is a simple example of linear regression
with time series errors. In practice, more elaborated time series models can be added
to a linear regression equation to form a general regression model with time series
errors.

Estimating a regression model with time series errors was not easy before the
advent of modern computers. Special methods such as the Cochrane–Orcutt estimator
have been proposed to handle the serial dependence in the residuals (Greene, 2003,
p. 273). By now, the estimation is as easy as that of other time series models. If the
time series model used is stationary and invertible, then one can estimate the model
jointly via the maximum likelihood method. This is the approach we take using the
command arima in R. For the US weekly interest rate data, the fitted version of
model (Eq. 2.48) is

c3t = 0.794c1t + et , et = at + 0.1823at−1, σ̂a = 0.0678, (2.49)

with R2 = 83.1%. The standard errors of the parameters are 0.0075 and 0.0196,
respectively. The model no longer has a significant lag-1 residual ACF, even though
some minor residual serial correlations remain at lags 4, 6, and 7. The incremental
improvement of adding additional MA parameters at lags 4, 6, and 7 to the residual
equation is small, and the result is not reported here.



REGRESSION MODELS WITH TIME SERIES ERRORS 115

Comparing the models in Equations (2.46), (2.47), and (2.49), we make the fol-
lowing observations. First, the high R2 96.5% and coefficient 0.930 of model (Eq.
2.46) are misleading because the residuals of the model show strong serial correla-
tions. Second, for the change series, R2 and the coefficient of c1t of models (Eqs.
2.47 and 2.49) are close. In this particular instance, adding the MA(1) model to the
change series provides only a marginal improvement. This is not surprising because
the estimated MA coefficient is small numerically, even though it is statistically highly
significant. Third, the analysis demonstrates that it is important to check residual serial
dependence in linear regression analysis.

From Equation (2.49), the model shows that the two weekly interest rate series
are related as

x3t = x3,t−1 + 0.794(x1t − x1,t−1) + at + 0.182at−1.

The interest rates are concurrently and serially correlated.

R Demonstration. Output edited.

> r1=read.table("w-gs1yr.txt",header=T)[,4]
> r3=read.table("w-gs3yr.txt",header=T)[,4]
> m1=lm(r3∼r1)
> summary(m1)
Call:
lm(formula = r3 ∼ r1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.83214 0.02417 34.43 <2e-16 ***
r1 0.92955 0.00357 260.40 <2e-16 ***
---
Residual standard error: 0.5228 on 2465 degrees of freedom
Multiple R-squared: 0.9649, Adjusted R-squared: 0.9649

> plot(m1$residuals,type=’l’)
> acf(m1$residuals,lag=36)
> c1=diff(r1)
> c3=diff(r3)
> m2=lm(c3 -1+c1)
> summary(m2)
Call:
lm(formula = c3 ∼ -1 + c1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
c1 0.791935 0.007337 107.9 <2e-16 ***
---
Residual standard error: 0.06896 on 2465 degrees of freedom
Multiple R-squared: 0.8253, Adjusted R-squared: 0.8253

> acf(m2$residuals,lag=36)

> m3=arima(c3,order=c(0,0,1),xreg=c1,include.mean=F)
> m3
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Call:
arima(x = c3, order = c(0, 0, 1), xreg = c1, include.mean = F)
Coefficients:

ma1 c1
0.1823 0.7936

s.e. 0.0196 0.0075

sigma^2 estimated as 0.0046: log likelihood=3136.62, aic=-6267.23
>
> rsq=(sum(c3^2)-sum(m3$residuals^2))/sum(c3^2)
> rsq
[1] 0.8310077

Summary. We outline a general procedure for analyzing linear regression mod-
els with time series errors as follows:

1. Fit the linear regression model and check serial correlations of the residuals.

2. If the residual series is unit-root nonstationary, take the first difference of both
the dependent and explanatory variables. Go to step 1. If the residual series
appears to be stationary, identify an ARMA model for the residuals and modify
the linear regression model accordingly.

3. Perform a joint estimation via the maximum likelihood method and check the
fitted model for further improvement.

To check the serial correlations of residuals, we recommend that the Ljung–Box
statistics be used instead of the Durbin–Watson (DW) statistic because the latter only
considers the lag-1 serial correlation. There are cases in which serial dependence in
residuals appears at higher-order lags. This is particularly so when the time series
involved exhibits some seasonal behavior.

Remark. For a residual series et with T observations, the Durbin–Watson statistic is

DW =
∑T

t=2(et − et−1)
2∑T

t=1 e2
t

.

Straightforward calculation shows that DW ≈ 2(1 − ρ̂1), where ρ̂1 is the lag-1 ACF
of {et }. �

Remark. In some application, the structure of the serial dependence in residuals
might not be of direct interest, as one focuses on making inference concerning the
linear regression model. In this case, it suffices to obtain a consistent estimate of
the covariance matrix of the regression coefficient. Several methods are available in
the literature to estimate the covariance matrix of the regression coefficients in the
presence of serial correlations and conditional heteroscedasticity. Interested readers
are referred to Tsay (2010, Section 2.10). �
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2.11 LONG-MEMORY MODELS

We have discussed that for a stationary time series, the ACF decays exponentially to 0
as lag increases. Yet for a unit-root nonstationary time series, it can be shown that the
sample ACF converges to 1 for all fixed lags as the sample size increases (Chan and
Wei, 1988; Tiao and Tsay, 1983). There exist some time series whose ACF decays
slowly to 0 at a polynomial rate as the lag increases. These processes are referred to
as long-memory time series . One such example is the fractionally differenced process
defined by

(1 − B)d xt = at , −0.5 < d < 0.5, (2.50)

where {at } is a white noise series. Properties of model (Eq. 2.50) have been widely
studied in the literature (Hosking, 1981). We summarize some of these properties as
follows:

1. If d < 0.5, then xt is a weakly stationary process and has the infinite MA
representation

xt = at +
∞∑

i=1

ψi at−i , with

ψk = d(1 + d) · · · (k − 1 + d)

k !
= (k + d − 1)!

k !(d − 1)!
.

2. If d > −0.5, then xt is invertible and has the infinite AR representation

xt =
∞∑

i=1

πi xt−i + at , with

πk = −d(1 − d) · · · (k − 1 − d)

k !
= (k − d − 1)!

k !(−d − 1)!
.

3. For −0.5 < d < 0.5, the ACF of xt is

ρk = d(1 + d) · · · (k − 1 + d)

(1 − d)(2 − d) · · · (k − d)
, k = 1, 2, . . .

In particular, ρ1 = d/(1 − d) and

ρk ≈ (−d)!

(d − 1)!
k 2d−1, as k → ∞.
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4. For −0.5 < d < 0.5, the PACF of xt is φk ,k = d/(k − d) for k = 1, 2, . . .

5. For −0.5 < d < 0.5, the spectral density function f (ω) of xt , which is the
Fourier transform of the ACF of xt , satisfies

f (ω) ∼ ω−2d , as ω → 0, (2.51)

where ω ∈ [0, 2π] denotes the frequency.

Of particular interest here is the behavior of ACF of xt when d < 0.5. The property
says that ρk ∼ k 2d−1, which decays at a polynomial, instead of an exponential, rate.
For this reason, such an xt process is called a long-memory time series . A special
characteristic of the spectral density function in Equation (2.51) is that the spectrum
diverges to infinity as ω → 0. However, the spectral density function of a stationary
ARMA process is bounded for all ω ∈ [0, 2π].

Earlier, we used the binomial theorem for noninteger powers

(1 − B)d =
∞∑

k=0

(−1)k
(

d
k

)
Bk ,

(
d
k

)
= d(d − 1) · · · (d − k + 1)

k !
.

If the fractionally differenced series (1 − B)d xt follows an ARMA(p, q) model, then
xt is called an ARFIMA(p, d , q) process, which is a generalized ARIMA model by
allowing for noninteger d .

In practice, if the sample ACF of a time series is not large in magnitude, but
decays slowly, then the series may have long memory. As an illustration, Figure 2.31
shows the sample ACFs of the absolute series of daily simple returns for the CRSP
value- and equal-weighted indexes from January 2, 1970 to December 31, 2008.
The ACFs are relatively small in magnitude but decay very slowly; they appear

to be significant at the 5% level even after 300 lags. For more information on the
behavior of sample ACF of absolute return series, see Ding et al. (1993). For the pure
fractionally differenced model in Equation (2.50), one can estimate d using either
a maximum likelihood method or a regression method with logged periodogram at
the lower frequencies. See, for instance, Geweke and Porter-Hudak (1982). Finally,
long-memory models have attracted some attention in the finance literature in part
because of the work on fractional Brownian motion in the continuous-time models.

Example 2.8. To illustrate the modeling of long-memory time series, we consider the
daily absolute returns of the value-weighted index of CRSP from January 2, 1970 to
December 31, 2008. The sample ACF of the series is shown in Figure 2.31a. Treating
the series as a purely fractionally differenced process and applying the Geweke-Porter-
Hudak method, we obtain d̂ = 0.372 with standard error 0.070. The estimate is indeed
in the stationary and invertible interval (0,0.5). If we employ an AFRIMA(1,d ,1) model
and use the maximum likelihood method, then we obtain the fitted model

(1 − 0.113B)(1 − B)0.491yt = (1 − 0.576B)at ,



LONG-MEMORY MODELS 119

Lag

A
C

F

0 50 100 150 200 250 300

−0
.1

0.
1

0.
2

0.
3

0.
4

ACF of the absolute returns of value–weighted index

Lag

A
C

F

0 50 100 150 200 250 300

−0
.1

0.
1

0.
2

0.
3

0.
4

ACF of the absolute returns of equal–weighted index

(a)

(b)

Figure 2.31. Sample autocorrelation function of the absolute series of daily simple returns

for the CRSP value- and equal-weighted indexes: (a) the value-weighted index return and (b)

the equal-weighted index return. The sample period is from January 2, 1970 to December 31,

2008.

where yt is the absolute return and the standard errors of the estimates are 0.006,
0.008, and 0.006, respectively, in the order of appearance. The estimates are highly
significant. In particular, the estimate of the fractional parameter is close to the nonsta-
tionary boundary of 0.5. Finally, the package fracdiff can be used in R to estimate
AFRIMA(p, d , q) models. �

R Demonstration

> library(fracdiff)
> da=read.table("d-ibm3dx7008.txt",header=T)
> head(da)

Date rtn vwretd ewretd sprtrn
1 19700102 0.000686 0.012137 0.033450 0.010211
....

6 19700109 -0.001353 -0.002797 -0.002923 -0.003021
> ew=abs(da$vwretd)
% obtain Geweke-Port-Hudak estimate using command fdGPH
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> m3=fdGPH(ew)
> m3
$d
[1] 0.3722260
$sd.as
[1] 0.0698385
$sd.reg
[1] 0.06868857
% Maximum likelihood estimation of an AFRIMA(1,d,1) model.
> m2=fracdiff(ew,nar=1,nma=1)
> summary(m2)
Call:
fracdiff(x = ew, nar = 1, nma = 1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

d 0.490938 0.007997 61.39 <2e-16 ***
ar 0.113389 0.005988 18.94 <2e-16 ***
ma 0.575895 0.005946 96.85 <2e-16 ***
---
[d.tol = 0.0001221, M = 100, h = 0.0003742]
Log likelihood: 3.551e+04 ==> AIC = -71027.02 [1 deg.freedom]

2.12 MODEL COMPARISON AND AVERAGING

In applications, there is no true model for a given time series. All statistical models
are approximations used to describe the dynamic dependence of the data. It is then
common to see that several models fit a given data set well, and the question of
model comparison arises. In this section, we discuss two methods to compare time
series models. These methods are statistical criteria. They are designed to provide
guidances in selecting a model. It should also be kept in mind, however, that the
objective of data analysis and substantive information of the problem at hand are also
important in model selection.

2.12.1 In-sample Comparison

If the objective of data analysis is to gain insight into the dynamic structure of a
time series, then one can use in-sample measurement to compare different models. By
in-sample, we mean that all data are used in model estimation and comparison. In this
case, information criteria, such as AIC and BIC, and the estimate of residual variance
can be used for model comparison. For a selected criterion, the model with a smaller
value is preferred. To illustrate, consider Example 2.7, in which a seasonal ARMA
model and a regression model with January dummy are used to model the CRSP
Decile 1 index from January 1970 to December 2008. For the regression model,
the residual standard error is 0.0690 while that of the seasonal ARMA model is
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√
0.00472 = 0.0687. Therefore, if the residual standard error is used as the criterion

for in-sample comparison, then the seasonal ARMA model is selected. In this particular
instance, the difference between the two competing models is small.

2.12.2 Out-of-sample Comparison

When the objective of time series modeling is forecasting, one should use the fore-
casting performance of the models in model comparison. A commonly used measure
to quantify the forecasting performance of statistical models is the mean square of
forecast errors (MSFE) in an out-of-sample exercise. This model comparison method
is known as backtesting in the finance literature. We use 1-step ahead forecasts to
introduce the method. However, the idea applies to multistep ahead forecasts too.

Backtesting. The procedure of backtesting for a statistical model is as follows:

1. Divide the data set into estimation and forecasting subsamples. There is no
specific rule to guide the division, but each subsample should contain sufficient
data points so that the estimation and MSFE can be as accurate as possible.

2. Perform model estimation using data in the estimation subsample and use the
fitted model to obtain 1-step ahead forecast and its forecast error. Specifically,
suppose the estimation subsample is {xt |t = 1, . . . , h}. We estimate the model
using the first h data points to compute the 1-step ahead prediction x̂h(1) and
its forecast error eh(1) = xh+1 − x̂h(1). The data point xh+1 is not used in
model estimation.

3. Advance the estimation subsample by one data point, that is, {xt |t = 1, . . . , h +
1}. Reestimate the model using h + 1 data points and compute the 1-step ahead
forecast and its forecast error. That is, compute eh+1(1) = xh+2 − x̂h+1(1),
where x̂h+1(1) is the 1-step ahead prediction of the newly fitted model at the
forecast origin h + 1.

4. Repeat step 3 until we have the 1-step ahead forecast error eT−1(1) = xT −
x̂T−1(1), where T is the sample size.

The MSFE of the model is then given by

MSFE(m) =
∑T−1

j=h [ej (1)]2

T − h
,

where m denotes the model used. One selects the model with the smallest MSFE
as the best model for the data. In practice, one often uses the square root ot MSFE
instead of MSFE itself. Other measurements of forecasting performance include the
mean absolute forecast errors and bias, that is,

MAFE(m) =
∑T−1

j=h |ej (1)|
T − h

, Bias(m) =
∑T−1

j=h ej (1)

T − h
.
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Figure 2.32. Time plots of the US quarterly real gross domestic product from the first quarter

of 1947 to the second quarter of 2010: (a) real GDP in logarithm and (b) the growth rates of

GDP.

Example 2.9. Consider the US quarterly real GDP from the first quarter of 1947 to
the second quarter of 2010. The GDP data are obtained from the Federal Reserve Bank
at St Loius, in billions of chained 2005 dollars, and seasonally adjusted. Figure 2.32
shows the time plots of the quarterly real GDP, in logarithm, and its growth rate
series. We shall focus on the growth rate series, denoted by xt . Figure 2.33 shows the
sample ACF and PACF of xt . From the plots, both ACF and PACF decay quickly.
The PACF suggests an AR(3) model for the data. Using AIC via the ar command in
R, we also obtain an AR(3) model. The fitted model is

(1 − 0.346B − 0.130B2 + 0.123B3)(xt − 0.0079) = at , σ̂ 2
a = 8.32 × 10−5,

(2.52)
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Figure 2.33. Sample ACF and PACF of the growth rates of US quarterly real GDP from 1947.II

to 2010.II: (a) sample ACF and (b) sample PACF. Dashed lines represent two standard error
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Figure 2.34. Model checking for an AR(3) model fitted to the growth rates of US quarterly

real GDP from 1947.II to 2010.II: (a) standardized residuals, (b) residual sample ACF, and (c)

p-values of the Ljung–Box statistics for residuals.

where the standard errors of the estimates are, in order, 0.062, 0.066, 0.062, and
0.0009, respectively. The AIC of the fitted AR(3) model is −1648.45. Figure 2.34
shows the model checking statistics of the AR(3) model. These plots indicate that the
model is adequate.

Since the data are seasonally adjusted and for the purpose of model comparison,
we also entertain a seasonal model,

(1 − 0.331B − 0.152B2 + 0.110B3)(1 − 0.497B4)(xt − 0.0079) = (1 − 0.587B4)at ,
(2.53)

where the standard errors of the estimates are 0.063, 0.067, 0.064, 0.258, 0.0008,
and 0.236, respectively, and the residual variance is σ̃ 2

a = 8.24 × 10−5. The seasonal
AR parameter is only marginally significant. Model checking fails to indicate any
inadequacy of this fitted seasonal model. The AIC of model (Eq. 2.53) is −1646.93.

Turn to model comparison between the two models in Equations (2.52) and (2.53).
For in-sample comparison, AIC selects the AR(3) model. For out-sample comparison,
we apply the backtesting procedure with initial forecast origin being the fourth quarter
of 2000, so that there are 38 quarters in the forecasting subperiod. For 1-step ahead
prediction, the root mean square of forecast errors for the AR(3) and seasonal models
are 0.00615 and 0.00632, respectively. Again, the AR(3) model is preferred. The mean
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absolute forecast errors are 0.00443 and 0.00455, respectively, and is also in favor of
the AR(3) model.

Finally, in this particular instance, both in-sample and out-sample comparisons
select the same AR(3) model for the real GDP growth rates. It is possible in a real
application that different models are selected for in-sample and out-sample compar-
isons. It is also possible that the choice of the initial forecast origin affects the result
of model selection. We recommend that one uses several initial forecast origins to
obtain a better understanding of the comparison.

Remark. The backtesting of Example 2.9 was done by a R script backtest, which
is available on the web page of the book. �

R Demonstration

> da=read.table("q-gdpc96.txt",header=T)
> head(da)
Year Mon Day gdp

1 1947 1 1 1772.204
....

6 1948 4 1 1856.930
> gdp=log(da$gdp)
> dgdp=diff(gdp)

> m1=ar(dgdp,method=’mle’)
> m1$order
[1] 3
> m2=arima(dgdp,order=c(3,0,0))
> m2
Coefficients:

ar1 ar2 ar3 intercept
0.3462 0.1299 -0.1225 0.0079

s.e. 0.0623 0.0655 0.0624 0.0009

sigma^2 estimated as 8.323e-05: log likelihood=829.23, aic=-1648.45

> m3=arima(dgdp,order=c(3,0,0),season=list(order=c(1,0,1),period=4))
> m3
Coefficients:

ar1 ar2 ar3 sar1 sma1 intercept
0.3305 0.1521 -0.1103 0.4966 -0.5865 0.0079

s.e. 0.0633 0.0668 0.0635 0.2578 0.2357 0.0008

sigma^2 estimated as 8.24e-05: log likelihood=830.47, aic=-1646.93
>
> source("backtest.R") % Perform backtest
> mm2=backtest(m2,dgdp,215,1)
[1] "RMSE of out-of-sample forecasts"
[1] 0.006153102
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.004430387
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> mm3=backtest(m3,dgdp,215,1)
[1] "RMSE of out-of-sample forecasts"
[1] 0.006322009
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.004553896

2.12.3 Model Averaging

When several models fit a given time series well, instead of selecting a single model,
one can use all the models to produce a combined forecast. This technique is referred
to as model averaging in the statistical literature. Suppose that there are m models
available and they all produce unbiased forecasts for a time series. By unbiased fore-
cast, we mean that the expectation of the associated forecast error is 0. Let x̂i ,h+1
be the 1-step ahead forecast of model i at the forecast origin h . Then, a combined
forecast is

x̂h+1 =
m∑

i=1

wi x̂i ,h+1,

where wi is a nonnegative real number denoting the weight for model i and satisfies∑m
i=1 wi = 1. The weights wi can be determined in various ways. For example, in

Bayesian inference, wi is the posterior probability of model i . Here, we use the simple
average, namely, wi = 1

m . Limited experience shows that this simple average works
well in practice.

EXERCISES

If not specifically specified, use 5% significance level to draw conclusions in the
exercises.

1. Consider the monthly US unemployment rate from January 1948 to November
2011 in the file m-unrate-4811.txt. The data are seasonally adjusted and
obtained from the Federal Reserve Bank at St Louis.

(a) Does the monthly unemployment rate have a unit root? Why?

(b) Build a time series model for the monthly unemployment rates. Check the
fitted model for adequacy. Then, use the model to forecast the unemploy-
ment rate for the December 2011 and the first three months of 2012. (Note
that there are more than one model that fits the data well. You only need
an adequate model.)

(c) Does the fitted model imply the existence of business cycles? Why?

2. Consider the monthly simple returns of CRSP Decile 1, 2, 5, 9, and 10 portfo-
lios based on the market capitalization of NYSE/AMEX/NASDAQ. The data
span is from January 1961 to September 2011.
(a) For the return series of Decile 2 and Decile 10, test the null hypothesis

that the first 12 lags of autocorrelations are 0 at the 5% level. Draw your
conclusion.



126 LINEAR MODELS FOR FINANCIAL TIME SERIES

(b) Build an ARMA model for the return series of Decile 2. Perform model
checking and write down the fitted model.

(c) Use the fitted ARMA model to produce 1- to 12-step ahead forecasts of
the series and the associated standard errors of forecasts.

3. Consider the daily range (daily high–daily low) of Apple stock from Jan-
uary 2, 2007 to December 23, 2011. One can obtain the data by the package
quantmod from Yahoo. Compute the first 100 lags of ACF of the series. Is
there evidence of long-range dependence? Why? If the range series has long
memory, build an AFRIMA model for the data.

4. Consider the monthly yields of Moody’s Aaa & Baa seasoned bonds from
January 1919 to November, 2011. The data are obtained from FRED of Federal
Reserve Bank of St. Louis. Consider the log series of monthly Aaa bond yields.
Build a time series model for the series, including model checking.

5. Consider again the monthly log series of Moody’s Aaa bound yield. Use the
exponential smoothing method to produce 1- to 12-step ahead out-of-sample
forecasts at the forecast origin November 2010.

6. Consider the two bond yield series of the previous exercise. What is the
relationship between the two series? To answer this question, take the log
transformation of the data to build a time series model for the Aaa yields
using Baa yields as an explanatory variable. Write down the fitted model,
including model checking.

7. Consider the quarterly earnings per share of the Johnson & Johnson from the
first quarter of 1992 to the second quarter of 2011. The data are in the file
q-jnj-earns-9211.txt and are obtained from the First Call Historical
Database of Thomson Reuters. Take log transformation of the data if necessary.
Build a time series model for the data. Perform model checking to assess the
adequacy of the fitted model. Write down the model. Refit the model using data
from 1992 to 2008. Perform 1-step to 10-step ahead forecasts of the quarterly
earnings and obtain a forecast plot.

8. Consider the US quarterly real gross national product from the first quarter of
1947 to the third quarter of 2011. The data are in the file q-GNPC96.txt,
seasonally adjusted, and in billions of chained 2005 dollars. Let xt be the
growth rate series of the real GDP.
(a) The ar command identifies an AR(4) model for xt via the AIC criterion.

Fit the model. Is the model adequate? Why?

(b) The sample PACF of xt specifies an AR(3) model. Fit the model. Is it
adequate? Why?

(c) What is the model for xt if one uses in-sample model comparison? Why?

(d) Divide the data into estimation and forecasting subsamples using the fourth
quarter of 2000 as the initial forecast origin and apply the backtesting
procedure with MSFE as the criterion. Select a model for xt . Justify the
choice.
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3

CASE STUDIES OF LINEAR
TIME SERIES

In this chapter, we consider three case studies of linear time series analysis. Our
goals are (i) to demonstrate applications of the methods discussed in Chapter 2; (b) to
show the usefulness and limitations of linear time series models; and (c) to gain fur-
ther experience in analyzing time series data with R. The three cases considered are
(i) the monthly global temperature anomalies from January 1880 to August 2010,
(ii) the monthly US unemployment rate with or without the weekly initial jobless
claims, and (iii) the weekly US regular gasoline price from January 6, 1997, to Septem-
ber 27, 2010, and the crude oil price from January 3, 1997, to September 24, 2010.
We chose these three cases because they are timely, have important implications to
the US economy, and are informative in achieving the goals of the chapter.

A main difficulty for the beginners of time series analysis is finding an adequate
model for a given series. This is particularly so when the dynamic dependence of the
data is complex or when many models seem to fit the data well. In this chapter, we
tackle this difficulty by working through real examples. Our goal is that the three case
studies are helpful to the reader.

Let us start by accepting Professor George Box’s dictum concerning statistical
models: All models are wrong, but some are useful (Box, 1976). Our goal then is to
find an appropriate model that is useful to the objective of data analysis. Thus, the

An Introduction to Analysis of Financial Data with R, First Edition. Ruey S. Tsay.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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choice of a final model often depends on the objective of data analysis. It would
not surprise me that a reader can find alternative models for the three time series
considered in the chapter.

There are some general guidelines available for time series modeling. First, data
are only part of information available in an application. We may have some prior
knowledge about the problem at hand. In this situation, it is important to make use
of the substantive information in model selection. Combination and cross-validation
between prior knowledge and data often lead to an improved model selection. Second,
in some cases, many models are available and the distinction between these competing
models is small. The issue of model selection then becomes less important and one
can comfortably use one of the models. Third, in some applications, especially in
forecasting, one may want to combine several competing models. This results in
pooling or combining forecasts. Fourth, a general principle of modeling is to start with
a simple model. We can refine the model by using the iterative model-building process
of Box and Jenkins, namely identification, estimation, and model checking, see Box
et al.(2008). Finally, another general principle of statistical modeling is simplicity,
a concept often referred to as keeping it sophisticatedly simple (KISS) by my late
colleague Professor Arnold Zellner. Readers will find via examples that simple models
can often capture the basic information embedded in the data.

3.1 WEEKLY REGULAR GASOLINE PRICE

Since the oil crisis of early 1970s, oil price has shown marked impacts on the global
economy. The high gasoline price in 2008 further demonstrated the effects of oil price
on daily life. High gasoline price results in high transportation and heating costs and,
hence, higher prices for foods and services. This in turn leads to inflation and lower
disposable income for consumers on other items. In some cases, it can even lead to
recession in an economy. Thus, it is of interest and importance to analyze the gasoline
price. In this case study, we analyze the weekly retail regular gasoline price of the
United States. We also study the dependence of gasoline price on the crude oil price
and use the latter to improve the forecast of the former. The data used are obtained
from the web site of US Energy Information Administration at http://www.eia.gov.
The data span is from January 1997 to September 2010. More specifically, the weekly
data of regular all formulations retail gasoline prices (dollars per gallon) are from
January 06, 1997, to September 27, 2010. The weekly crude oil data are the US spot
price FOB weighted by estimated import volume (dollars per barrel) and are from
January 03, 1997, to September 24, 2010. Thus, the crude oil prices are available
three days prior to the gasoline prices, that is, from Fridays to Mondays. Here, FOB
stands for free on board, denoting a transaction whereby the seller makes the product
available within an agreed on period at a given port at a given price. Because the
prices vary substantially, we use log prices in our analysis.

Figure 3.1 shows the time plots of weekly log prices of US regular gasoline and
crude oil. As expected, the two series are highly related and move in unison. The log
prices also show an increasing trend. To render the series stationary, we consider the
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Figure 3.1. Weekly log prices of (a) regular gasoline (dollars per gallon) and (b) crude oil

(dollars per barrel) of the United States from January 1997 to September 2010. The data are

from US Energy Information Administration.

first differenced data. In other words, we focus on the log returns (or growth rates) of
the weekly regular gasoline and crude oil prices.

3.1.1 Pure Time Series Model

We begin our analysis with a pure time series model. Let xt be the weekly growth
rates of US regular gasoline price. Figure 3.2 gives the time plot of xt . It shows that
there was a price jump in 2005 and the price increases in the first half of 2008 result
in some big drops in the gasoline price. These features often lead to some large
outliers in the subsequent analysis. Figure 3.3 shows the sample ACFs and PACFs
of xt . Both ACFs and PACFs decay quickly, confirming that the series is weakly
stationary. The plot shows that the first five lags of PACF are significantly different
from zero, suggesting that an AR(5) model might be appropriate for xt . Indeed, the
ar command in R selects an AR(5) model. Furthermore, the one-sample t-test gives
a t-ratio of 1.306 with p value 0.192 for xt , implying that the mean of the growth
rate is not significantly different from zero. Therefore, we specify an AR(5) model
without the constant for the growth rate series of weekly regular gasoline prices.

The fitted model is

(1 − 0.507B − 0.079B2 − 0.136B3 + 0.036B4 + 0.086B5)xt = at ,

σ 2
a = 3.26 × 10−4.
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Figure 3.2. Weekly growth rates of the US regular gasoline price from January 1997 to

September 2010.
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Figure 3.4. Model checking of AR(5) model in Equation (3.1) for the growth rate of weekly US

regular gasoline prices from January 6, 1997 to September 27, 2010. (a) Standardized residuals,

(b) ACF of residuals, (c) p-values for Ljung–Box statistic.

Since the lag-4 coefficient is insignificant with t-ratio less than 1, we refine the
model as

(1 − 0.504B − 0.079B2 − 0.122B3 + 0.101B 5)xt = at ,

σ 2
a = 3.265 × 10−4, (3.1)

where the standard errors of the coefficients are 0.037, 0.042, 0.039, and 0.033, respec-
tively. The t-ratio of lag-2 coefficient is 1.89 and the AIC of the model is −3704.96.
One can further remove the lag-2 coefficient, but the AIC of the resulting model is
−3703.4, which is greater than that of model (3.1). Consequently, we prefer the AR(5)
model in Equation (3.1). Figure 3.4 shows the diagnostic plots of the fitted model in
Equation (3.1). As expected, the plot of standardized residuals indicates some possible
outliers, that is, big residuals, in the data. The sample ACF of the residuals and the p
values of Ljung–Box statistics show that the fitted AR(5) model is adequate.



WEEKLY REGULAR GASOLINE PRICE 133

The sample PACF of xt in Figure 3.3 shows a dominating correlation at lag 1. The
ACF of the same figure indicates that the autocorrelations decay exponentially. These
two features suggest that p = 1. On the other hand, the significance of ACFs and
PACFs at higher order lags indicates p = 1 is not sufficient. Thus, another possibility
is to entertain an ARMA model. To this end, we consider an ARMA(1,3) model. After
removing an insignificant coefficient, we obtain the model

(1 − 0.633B)xt = (1 − 0.127B + 0.141B3)at ,

σ 2
z = 3.276 × 10−4,

where the standard errors of the coefficient estimates are 0.051, 0.060, and 0.041,
respectively. Model checking, not shown, fails to suggest any major inadequacy of
the model. Thus, this ARMA(1,3) model is also adequate for the weekly growth rates
of regular gasoline price. However, AIC of the model is −3704.6, which is larger
than that of an AR(5) model in Equation (3.1). Consequently, we select the AR(5)
model in Equation (3.1) as the pure time series model for xt .

3.1.2 Use of Crude Oil Prices

Next, as gasoline prices depend heavily on spot prices of crude oil, we employ a
regression model with time series errors to improve the accuracy in forecasting weekly
gasoline price. Let zt be the weekly growth rates of the US crude oil price. A simple
linear regression gives

xt = 0.287zt + εt , (3.2)

where the standard error of the coefficient is 0.015. The adjusted R-squared of the
model in Equation (3.2) is 33.57%. The sample ACF and PACF of the residual εt of
Equation (3.2) are similar to those of xt . Thus, the use of zt does not alter the model
specification of xt . As a matter of fact, the ar command in R specifies an AR(6)
model for the residual εt of Equation (3.2). The fitted model becomes

(1 − 0.40B − 0.16B2 − 0.09B3 − 0.03B4 + 0.09B5 + 0.05B6)(xt − 0.193zt ) = at ,

where the coefficients at lag-4 and lag-6 are insignificant at the 5% level. Therefore,
we simplify the model and obtain

(1 − 0.404B − 0.164B2 − 0.096B3 + 0.101B5)(xt − 0.191zt ) = at ,

σ 2
a = 2.53 × 10−4, (3.3)

where the standard errors of the coefficient estimates are 0.039, 0.040, 0.039, 0.035,
and 0.014, respectively. Figure 3.5 shows the diagnostic plots of this regression model
with time series errors. The large standardized residuals remain, but the sample ACF
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Figure 3.5. Model checking for regression model with AR(5) innovations in Equation (3.3) for

the growth rates of US weekly regular gasoline price from January 6, 1997 to September 27,

2010. (a) Standardized residuals, (b) ACF of residuals, (c) p-values for Ljung–Box statistic.

and p values of the Ljung–Box statistics suggest that the model is adequate. The AIC
of the model is −3884.95.

It is tempting to compare the models in Equations (3.1) and (3.3). However, this is
an unfair comparison because the regression model uses additional information of the
growth rates of crude oil price. Given the high dependence between the two oil prices,
one would expect the regression model with time series errors in Equation (3.3) to be
a better model. This is indeed the case. The information on crude oil prices reduces the
residual variance from 3.265 × 10−4 to 2.532 × 10−4, a 22.5% reduction. Similarly,
the AIC drops from −3704.96 to −3884.95. As it is seen later, the regression model
also produces more accurate out-of-sample1 forecasts.

3.1.3 Use of Lagged Crude Oil Prices

The usefulness of the improved model in Equation (3.3) is limited to 3 days, because
it uses the growth rate of crude oil price 3 days earlier. To increase the lead time
in forecasting, one can use the lagged growth rate of crude oil price. For instance,
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the model

xt = βzt−1 + εt

would give the analysts 10 days in advance to predict the weekly gasoline price. The
fitted model is

xt = 0.186zt−1 + εt , σε = 0.0209, (3.4)

where the standard error of the coefficient estimate is 0.0172. The adjusted R-squared
of this model is 14.1%, which, as expected, is much lower than that of the regression
model in Equation (3.2). This is understandable because the correlation between xt
and zt−1 is smaller than that between xt and zt .

The residuals of the model in Equation (3.4) are serially correlated. Indeed, the
sample ACFs and PACFs of the residuals are similar to those of the residuals of
Equation (3.2), albeit a little bit more complicated. The ar command of R identifies
an AR(9) model for the residuals. After removing all insignificant estimates, we obtain
the model

(1 − 0.454B − 0.088B2 − 0.142B3 + 0.083B5 + 0.064B9)(xt − 0.041zt−1) = at ,
(3.5)

where σ 2
a = 3.23 × 10−4 and the standard errors of the estimates are, in order, 0.043,

0.041, 0.039, 0.035, 0.032, and 0.018, respectively. The AIC of the model is −3703.4,
which is close to that of the pure time series model in Equation (3.1), but much higher
than that of the model in Equation (3.3). Strictly speaking, the AIC of this model is
not directly comparable with those of the previous models because the model has
one less observation owing to lagging. Nevertheless, the contribution of zt−1 to xt is
small. The coefficient 0.041 is statistically significant, but small. Diagnostic checking
statistics of model (3.5) are similar to those of model (3.1) and, hence, are omitted.
The model is also adequate.

3.1.4 Out-of-Sample Predictions

In this section we consider the performance of the three models built for the growth
rates of regular gasoline price in out-of-sample prediction. To this end, we employ
the backtesting method of Chapter 2. The method divides the data into modeling
and forecasting subsamples and uses an iterative procedure to compute prediction.
Specifically, the iterative procedure consists of an estimation–prediction cycle, and
starts with the last data point of the modeling subsample as the first forecast origin.
Once a forecast is produced, the procedure advances the forecast origin by 1 and
repeats the estimation-forecasting cycle. The recursive 1-step ahead forecast errors
in the forecasting subsample are then used to measure the accuracy of prediction.
Two most widely used measures of forecasting accuracy are the root mean square of
forecast errors (RMSFE) and the mean absolute forecast errors (MAFE).
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For the growth rates of weekly gasoline price, we divide the data into modeling
and forecasting subsamples with the latter consisting of the last 400 data points. In
other words, we start the forecast origin on January 24, 2003. The 400 observations
in the forecasting subsample should provide reliable measures of RMSFE and MAFE.
The results are given below:

Model RMSFE MAFE

AR(5) model in Equation (3.1) 0.02171 0.01538
Regression model in Equation (3.3) 0.01926 0.01285
Regression model in Equation (3.5) 0.02166 0.01548

From the table, we make the following observations. First, the regression model with
crude oil price 3-day earlier performs best. This is consistent with the in-sample
comparison and understandable. It shows that the gasoline price reflects the crude
oil price quickly. Second, the other two models fare similarly in out-of-sample pre-
diction. The contribution of crude oil price 10-day earlier is small, if any. If one
wants to predict the gasoline price more than 10 days in advance, one can simply
use the pure time series model in Equation (3.1). On the other hand, one should
use the regression model in Equation (3.3) if the forecast horizon is less than 3
days.

Finally, Figure 3.6 shows the time plot of recursive 1-step ahead predictions in
the forecasting subsample based on the pure time series model in Equation (3.1). The
solid line denotes the observed value, whereas the asterisk the prediction. Figure 3.7
provides the same for the regression model in Equation (3.3). These two plots provide
a direct comparison of the two models at each prediction.

R Demonstration. Output edited.

> da=read.table("w-petroprice.txt",header=T)
> da1=read.table("w-gasoline.txt")
> pgs=log(da1[,1])
> pus=log(da$US)
> tdx=c(1:717)/52+1997 % calendar time
> par(mfcol=c(2,1))
> plot(tdx,pgs,xlab=‘year’,ylab=‘ln(price)’,type=‘l’)
> title(main=‘(a) Gasoline’)
> plot(tdx,pus,xlab=‘year’,ylab=‘ln(price)’,type=‘l’)
> title(main=‘(b) Crude oil’)
> dpgs=diff(pgs)
> acf(dpgs,lag=20)
> pacf(dpgs,lag=20)
> m1=ar(diff(pgs),method=‘mle’)
> m1$order
[1] 5
> t.test(dpgs)

One Sample t-test
data: dpgs
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Figure 3.6. 1-step ahead out-of-sample predictions of model (3.1) for the growth rates of

weekly US regular gasoline price from January 24, 2003, to September 27, 2010. The data are

in solid line and predictions in asterisk.

t = 1.3062, df = 715, p-value = 0.1919
alternative hypothesis: true mean is not equal to 0
> m1=arima(dpgs,order=c(5,0,0),include.mean=F)
> m1
arima(x = dpgs, order = c(5, 0, 0), include.mean = F)
Coefficients:

ar1 ar2 ar3 ar4 ar5
0.5073 0.0788 0.1355 -0.0360 -0.0862

s.e. 0.0372 0.0417 0.0415 0.0417 0.0372

sigma^2 estimated as 0.0003262: log likelihood=1857.85,aic=-3703.71
> m1=arima(dpgs,order=c(5,0,0),include.mean=F,fixed=c(NA,NA,NA,0,NA))
> m1
arima(x=dpgs,order=c(5,0,0),include.mean=F,fixed=c(NA,NA,NA,0,NA))

Coefficients:
ar1 ar2 ar3 ar4 ar5

0.5036 0.0789 0.1220 0 -0.1009
s.e. 0.0370 0.0418 0.0385 0 0.0330

sigma^2 estimated as 0.0003265: log likelihood = 1857.48, aic = -3704.96
> tsdiag(m1,gof=20)
> dpus=diff(pus)
> m3=lm(dpgs∼-1+dpus)
> summary(m3)
Call:
lm(formula = dpgs ∼ -1 + dpus)
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Figure 3.7. 1-step ahead out-of-sample predictions of model (3.3) for the growth rates of

weekly US regular gasoline prices from January 24, 2003, to September 27, 2010. The data are

in solid line and predictions in asterisk.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

dpus 0.28703 0.01507 19.05 <2e-16 ***
---
Residual standard error: 0.01839 on 715 degrees of freedom
Multiple R-squared: 0.3366, Adjusted R-squared: 0.3357
F-statistic: 362.8 on 1 and 715 DF, p-value: < 2.2e-16

> acf(m3$residuals,lag=20)
> pacf(m3$residuals,lag=20)
> m4=ar(m3$residuals,method=‘mle’)
> m4$order
[1] 6
> m4=arima(dpgs,order=c(6,0,0),include.mean=F,xreg=dpus)
> m4
arima(x=dpgs,order=c(6, 0, 0), xreg = dpus, include.mean = F)

Coefficients:
ar1 ar2 ar3 ar4 ar5 ar6 dpus

0.3953 0.1634 0.0946 0.0297 -0.0873 -0.0525 0.1927
s.e. 0.0389 0.0400 0.0404 0.0405 0.0400 0.0373 0.0136

sigma^2 estimated as 0.0002524: log likelihood=1949.6,aic=-3883.21
>
> m4=arima(dpgs,order=c(5,0,0),include.mean=F,xreg=dpus)
> m4
arima(x=dpgs,order=c(5,0,0),xreg=dpus,include.mean=F)
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Coefficients:
ar1 ar2 ar3 ar4 ar5 dpus

0.4022 0.1621 0.0899 0.0209 -0.1086 0.1914
s.e. 0.0387 0.0401 0.0403 0.0400 0.0371 0.0136

sigma^2 estimated as 0.0002531: log likelihood=1948.6,aic=-3883.23
>
> m4=arima(dpgs,order=c(5,0,0),include.mean=F,xreg=dpus,fixed=c(NA,NA,NA,0,NA,NA))
> m4
arima(x=dpgs,order=c(5,0,0),xreg=dpus,include.mean=F,fixed=c(NA,NA,NA,0,NA,NA))

Coefficients:
ar1 ar2 ar3 ar4 ar5 dpus

0.4037 0.1642 0.0961 0 -0.1014 0.1911
s.e. 0.0386 0.0399 0.0386 0 0.0345 0.0136

sigma^2 estimated as 0.0002532: log likelihood=1948.5, aic=-3884.95
> tsdiag(m4,gof=20)

> c1=c(NA,NA,NA,0,NA)
> pm1=backtest(m1,dpgs,316,1,fixed=c1,inc.mean=F)
[1] "RMSE of out-of-sample forecasts"
[1] 0.02171235
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.01537881
> c4=c(NA,NA,NA,0,NA,NA)
> pm4=backtest(m4,dpgs,316,1,xre=dpus,inc.mean=F,fixed=c4)
[1] "RMSE of out-of-sample forecasts"
[1] 0.01925732
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.01285104
> tdx=tdx[2:717]
> pm4fit=dpgs[317:716]-pm4$error
> pm1fit=dpgs[317:716]-pm1$error
> plot(tdx[317:716],dpgs[317:716],xlab=‘year’,ylab=‘growth’,type=‘l’)
> points(tdx[317:716],pm1fit,pch=‘*’)
> plot(tdx[317:716],dpgs[317:716],xlab=‘year’,ylab=‘growth’,type=‘l’)
> points(tdx[317:716],pm4fit,pch=‘*’)
% Use lagged growth rate of crude oil price
> m6=lm(dpgs[2:716]∼-1+dpus[1:715])
> summary(m6)
lm(formula=dpgs[2:716]∼-1+dpus[1:715])
Coefficients:

Estimate Std. Error t value Pr(>|t|)
dpus[1:715] 0.18560 0.01716 10.81 <2e-16 ***

---
Residual standard error: 0.02093 on 714 degrees of freedom
Multiple R-squared: 0.1408, Adjusted R-squared: 0.1395
> acf(m6$residuals,lag=20)
> pacf(m6$residuals,lag=20)
> m7=ar(m6$residuals,method=‘mle’)
> m7$order
[1] 9
> m7=arima(dpgs[2:716],order=c(9,0,0),include.mean=F,xreg=dpus[1:715])
> m7
arima(x=dpgs[2:716],order=c(9,0,0),xreg=dpus[1:715],include.mean=F)

Coefficients:
ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8

0.4559 0.0888 0.1679 -0.0468 -0.0653 -0.0195 -0.0362 0.0797
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s.e. 0.0425 0.0410 0.0423 0.0415 0.0416 0.0414 0.0410 0.0408
ar9 dpus[1:715]

-0.0882 0.0454
s.e. 0.0373 0.0174

sigma^2 estimated as 0.0003204: log likelihood=1861.55, aic=-3701.1
> m7=arima(dpgs[2:716],order=c(9,0,0),include.mean=F,xreg=dpus[1:715],
fixed=c(NA,NA,NA,0,NA,0,0,0,NA,NA))
> m7
arima(x=dpgs[2:716],order=c(9,0,0),xreg=dpus[1:715],include.mean=F,

fixed = c(NA,NA,NA,0,NA,0,0,0,NA,NA))

Coefficients:
ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 dpus[1:715]

0.4544 0.0877 0.1415 0 -0.0830 0 0 0 -0.0640 0.0406
s.e. 0.0427 0.0413 0.0393 0 0.0345 0 0 0 0.0318 0.0176

sigma^2 estimated as 0.000323: log likelihood=1858.7, aic=-3703.4
> tsdiag(m7,gof=20)
> c7=c(NA,NA,NA,0,NA,0,0,0,NA,NA)
> pm7=backtest(m7,dpgs[2:716],315,1,xre=dpus[1:715],inc.mean=F,fixed=c7)
[1] "RMSE of out-of-sample forecasts"
[1] 0.0216638
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.01548401

3.2 GLOBAL TEMPERATURE ANOMALIES

Global warming is a topic of considerable importance and has attracted much attention
in recent years, ranging from environmental engineers to scientists to economists. If
the rise in global temperature continues, it will have a major impact on the global
economy. In this section, we analyze the monthly global temperature anomalies from
January 1880 to August 2010. Our goal is not to debate the evidence of global warm-
ing, but to demonstrate empirical time series analysis. Specifically, our goals are (i) to
illustrate the methods discussed in Chapter 2 about time series modeling and forecast-
ing, (ii) to compare different models, (iii) to see the limitation of time series models in
long-term prediction, and (iv) to show the difficulty in distinguishing trend-stationarity
from unit-root stationarity based purely on the data. Global climate changes involve
many other factors.

There are several data sets available for global temperature anomalies. See
the web sites http://data.giss.nasa.gov/gistemp/ of the Goddard Institute for Space
Studies (GISS), National Aeronautics and Space Administration (NASA) and
http://www.ncdc.noaa.gov/cmb-faq/anomalies.html of the National Climatic Data
Center (NCDC), National Oceanic and Atmospheric Administration (NOAA). We
employ the series of monthly means based on land-surface air temperature anomalies
of GISS, NASA. However, we obtained similar results from the data of NOAA. In
fact, the same models apply to both series.

Figure 3.8 shows the time plot of the global temperature anomalies from January
1880 to August 2010 for 1568 observations over 131 years. The GISS data are in
0.01◦C. An upward trend is clearly seen from the plot. In particular, the slope of the
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Figure 3.8. Monthly global temperature anomalies from January 1880 to August 2010.

trend seems to increase in the early 1980s. On the other hand, the variability of the
temperature is relatively stable over the 131 years.

3.2.1 Unit-Root Stationarity

Let Gt denote the monthly global temperature anomalies. To specify a model for Gt ,
we start by examining the dynamic dependence of the series. Figure 3.9 gives the
sample ACFs of Gt . As expected, the ACFs are high and decay slowly. A careful
inspection also shows that the ACFs exhibit a cyclic pattern with peaks occurring
around lags 24 and 36. This latter feature is not surprising because temperature often
has a seasonal pattern.

Because of the strong serial dependence, we consider the differenced data xt =
(1 − B)Gt . Figure 3.10 shows the sample ACFs and PACFs of xt . Both ACFs and
PACFs become small, indicating that xt can be approximated by a stationary time
series model. As the sample size 1568 is large, we can entertain a relatively more
complicated model. A careful examination of the sample ACFs of xt shows that (i)
ACF at lags 1, 2, 4, 5, and 8 is either significant or marginally significant, and (ii) ACF
at lag 24 is significant. The sample PACF, on the other hand, has several significant
values. In particular, the lag-1 PACF is much larger than others and the PACF does not
decay exponentially. Putting information together and following the general guidelines
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Figure 3.9. Sample autocorrelation function of the monthly global temperature anomalies.
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Figure 3.10. Sample autocorrelation and partial autocorrelation functions of the differenced

global temperature anomalies.
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Figure 3.11. Sample autocorrelation function of the residuals of ARIMA(1,1,2) model for

global temperature anomalies.

of the previous section, we start with the simple ARIMA(1,1,2) model

(1 − φB)(1 − B)Gt = (1 − θ1B − θ2B2)at , (3.6)

for Gt . Here, we use p = 1 because the differenced series xt has a large lag-1 PACF
and q = 2 because the first two ACFs of xt are significant. As the specified MA(2)
model can have significant PACFs at lower order lags, we decide to keep p = 1. The
high order ACFs are temporarily ignored because we like to keep the model simple.
The fitted model is

(1 − 0.739B)(1 − B)Gt = (
1 − 1.297B + 0.318B2) at , σ 2

a = 272.1. (3.7)

All estimates are highly significant. Figure 3.11 shows the sample ACF of the residuals
of the ARIMA(1,1,2) model in Equation (3.7). Based on the residual ACFs, the model
is inadequate because the ACFs are significant at lags 8 and 24.

Turn to model refinement. The significance of ACF at lag 24 is understandable
because of the seasonal nature of temperature. On the other hand, it is not easy to
explain the serial correlation at lag 8. Consequently, we refine the model as

(1 − φB)(1 − B)Gt = (
1 − θ1B − θ2B2) (

1 − θ24B24) at . (3.8)

The fitted model is

(1 − 0.761B)(1 − B)Gt = (
1 − 1.324B + 0.342B2) (

1 − 0.072B24) at ,

σ 2
a = 270.6, (3.9)
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Figure 3.12. Diagnostic checking plots of the model in Equation (3.9) for the monthly

global temperature anomalies. (a) Standardized residuals, (b) ACF of residuals, (c) p-values for

Ljung–Box statistic.

where the standard errors of the estimates are, in order, 0.038, 0.052, 0.049, and
0.024, respectively. These estimates are statistically significant. Figure 3.12 gives the
diagnostic plots for the seasonal model in Equation (3.9). The residual plot looks
reasonable and the p values of Ljung–Box statistics are above 0.05 except for Q(8)

and Q(19). As expected, the residual ACFs show marginally significant values at lags
8 and 19. As mentioned earlier, it is hard to explain the lag-8 serial correlation and
the magnitude of the ACF is small, we terminate the modeling process and treat the
model in Equation (3.9) as an adequate model. The AIC of model (3.9) is 13,234.4,
which is smaller than 13,241.1 of model (3.7).

The model in Equation (3.9) is called a unit-root nonstationary model because it
uses the first difference to transform the global temperature into a stationary series.
The time series Gt is said to be difference-stationary.

R Demonstration

> Gt=scan(file=‘m-GLBTs.txt’)
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> Gtemp=ts(Gt,frequency=12,start=c(1880,1))
> plot(Gtemp,xlab=‘year’,ylab=‘temperature’,type=‘l’) % Plot the data
> acf(diff(Gt),lag=36)
> pacf(diff(Gt),lag=36)

> m1=arima(Gt,order=c(1,1,2))
> m1
arima(x = Gt, order = c(1, 1, 2))

Coefficients:
ar1 ma1 ma2

0.7387 -1.2973 0.3183
s.e. 0.0406 0.0533 0.0492

sigma^2 estimated as 272.1: log likelihood=-6616.6, aic=13241.1
> acf(m1$residuals,lag=36)
> m1=arima(Gt,order=c(1,1,2),seasonal=list(order=c(0,0,1),period=24))
> m1
arima(x=Gt,order=c(1,1,2),seasonal=list(order=c(0,0,1),period=24))

Coefficients:
ar1 ma1 ma2 sma1

0.7612 -1.3241 0.3416 0.0717
s.e. 0.0379 0.0519 0.0485 0.0243

sigma^2 estimated as 270.6: log likelihood=-6612.2, aic=13234.4
> tsdiag(m1,gof=36)

3.2.2 Trend-Nonstationarity

In the literature, some analysts and scientists use time trend to model the global
temperature anomalies. By time trend, we mean using time index as an explanatory
variable. Consider the model

Gt = β0 + β1t + zt , (3.10)

where zt is an innovation series denoting the deviation of the global temperature
anomalies from a time trend. If zt is a stationary time series, then Gt is called a trend-
stationary time series , meaning that it can be transformed into a stationary series by
removing the effect of a time trend. In model (3.10), β1 is the slope of the time trend.
A positive β1 indicates that Gt will increase with time and eventually goes to positive
infinity as t approaches infinity. For monthly data, β1 is the monthly growth rate of
Gt . Conceptually, a trend-stationary time series is very different from a difference-
stationary one because the latter does not contain a fixed trend. We shall discuss
further the difference between the two models when we consider long-term prediction.

For the global temperature anomalies, the fitted linear regression model is

Gt = −38.04 + 0.05156t + zt , (3.11)

where the standard errors of the coefficient estimates are 1.135 and 0.0013, respec-
tively, and the standard deviation of zt is 22.46. The time slope is positive and highly
significant. Figure 3.13 shows the sample ACFs and PACFs of the innovation series
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Figure 3.13. Sample autocorrelations and partial autocorrelations of the innovation series zt

in Equation (3.11) for monthly global temperature anomalies.

zt of Equation (3.11). The PACFs decay quickly and the ACFs do not show any high
value. Therefore, it is reasonable to assume that zt does not have a unit root. That is,
zt is stationary and, hence, Gt is trend-stationary.

Next, we specify a model for the innovation series zt . Because its ACFs in
Figure 3.13 do not cut-off at any finite lag, zt does not follow a simple MA model. In
other words, some AR component is needed. That is, p > 0. The PACFs of Figure 3.13
have two discernible features. First, the first eight lags of PACFs are significant, indi-
cating that zt does not follow a low order AR model. This implies that q > 0. Second,
the PACFs do not follow a simple exponentially decaying pattern. This means that
p > 1. Putting information together and keeping the order simple, we start with an
ARMA(2,1) model for zt , that is,(

1 − φ1B − φ2B 2) zt = (1 − θ1B)at .

The model for Gt then becomes(
1 − φ1B − φ2B2) (Gt − β0 − β1t) = (1 − θ1B)at . (3.12)

The fitted model is(
1 − 1.239B + 0.272B2) (Gt + 38.72 − 0.053t) = (1 − 0.78B)at ,

σ 2
a = 272.9, (3.13)
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Figure 3.14. Diagnostic checking of the fitted model in Equation (3.14) for the monthly

global temperature anomalies. (a) Standardized residuals, (b) ACF of residuals, (c) p-values for

Ljung–Box statistic.

where all estimates are highly significant. However, the residual ACFs of the model
show a significant value at lag 24. This is not surprising based on the ARIMA model
used in the previous section. Consequently, we further refine the model and obtain

(
1 − 1.196B + 0.239B2) (Gt + 38.72 − 0.0529t)

= (1 − 0.745B)
(
1 − 0.0856B24) at , (3.14)

where σ 2
a = 270.8 and all estimates are statistically significant at the 5% level. The

standard errors of the coefficient estimates are, in order, 0.059, 0.048, 5.18, 0.006,
0.049, and 0.024, respectively. Figure 3.14 gives the diagnostic checking plots of the
model in Equation (3.14). Except for a minor residual ACF at lag 8, the checking
statistics fail to indicate any inadequacy of the fitted model. Consequently, we select
the model in Equation (3.14) as the final model for Gt under trend-stationarity.

On the basis of model in Equation (3.14), the global temperature increases on an
average 0.0529/100 ◦C per month. That is, the global temperature increases 0.00635 ◦C
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per year. This is very significant because it implies that the global temperature, on an
average, will increase 1 ◦C every 157 years. The AIC of the model in Equation (3.14)
is 13,247.5, which is larger than that of the difference-stationary model in
Equation (3.9).

R Demonstration

> time=c(1:1568) % time index
> m2=lm(Gt∼time)
> summary(m2)
lm(formula = Gt ∼time)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -38.039763 1.134960 -33.52 <2e-16 ***
time 0.051560 0.001253 41.15 <2e-16 ***
---
Residual standard error: 22.46 on 1566 degrees of freedom
Multiple R-squared: 0.5195, Adjusted R-squared: 0.5192
> par(mfcol=c(2,1))
> acf(m2$residuals,lag=36)
> pacf(m2$residuals,lag=36)
> m2=arima(Gt,order=c(2,0,1),xreg=time)
> m2
arima(x = Gt, order = c(2, 0, 1), xreg = time)

Coefficients:
ar1 ar2 ma1 intercept time

1.2385 -0.2719 -0.7802 -38.8493 0.0530
s.e. 0.0567 0.0477 0.0460 5.3548 0.0059

sigma^2 estimated as 272.9: log likelihood=-6623.0, aic=13257.97
> tsdiag(m2,gof=36) % Significant ACF at lag 24.
> m2=arima(Gt,order=c(2,0,1),seasonal=list(order=c(0,0,1),
period=24),xreg=time)

> m2
arima(x=Gt,order=c(2,0,1),seasonal=list(order=c(0,0,1),period=24),

xreg = time)

Coefficients:
ar1 ar2 ma1 sma1 intercept time

1.1960 -0.2394 -0.7451 0.0856 -38.7150 0.0529
s.e. 0.0587 0.0482 0.0486 0.0241 5.1843 0.0057

sigma^2 estimated as 270.8: log likelihood=-6616.7, aic=13247.5
> tsdiag(m2,gof=36) % model checking

3.2.3 Model Comparison

We have obtained two models for the monthly global temperature anomalies from Jan-
uary 1880 to August 2010. The first model in Equation (3.9) is difference-stationary,
whereas the second one in Equation (3.14) is trend-stationary. Both models are
adequate because they passed the rigorous model checking. A question that arises
naturally is which model should one choose. We shall address this question in this
section.
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In-Sample Comparison. As mentioned in Chapter 2, one approach to com-
pare models for a given time series is to consider their in-sample goodness of fit.
A commonly used criterion here is the Akaike information criterion or the Bayesian
information criterion. For the global temperature data, the difference-stationary model
in Equation (3.9) is selected based on the AIC because it has a smaller value at 13,234.
The two models, however, are close in many ways. For instance, Figure 3.15 shows
time plots of the residuals of the two competing models with the top panel for the
difference-stationary model. The two residuals series are essentially the same.

Another approach to in-sample model comparison is to study the implications
of the competing models. Here, the two fitted models for the global temperature
anomalies differ dramatically. As mentioned before, the trend-stationary model in
Equation (3.14) imposes a priori a time trend for the temperature. The estimated time
slope is 0.0529, which is positive and highly significant. Thus, the model implies that
the global temperature will continue to increase at a pace of 0.00635 ◦C per year
under the current environment. On the other hand, the difference-stationary model in
Equation (3.9) does not provide a definite support for the global warming. Similar
to the random walk model for stock prices, the future temperature may increase or
decrease because a random walk has no fixed direction. What the model implies
is that there exists substantial uncertainty in the future global temperature. It can
go anywhere from positive infinity to negative infinity. The observed data, which
were over 131 years, provide little guidance about the future global temperature. This
appears to be unconceivable at the first glance, but 131 years are not sufficiently long
when we are making inference about hundreds or thousands of years into the future.
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Figure 3.15. Residual plots for the models in Equations (3.9) and (3.14) for the monthly global

temperature anomalies. The upper panel is for model (3.9).
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In short, the data we have do not contain sufficient evidence to distinguish between
trend-stationarity and difference-stationarity.

Out-of-Sample Comparison. If the goal of time series analysis is forecasting,
one can use out-of-sample prediction to compare competing models. Again, we use
the backtesting of Chapter 2 to evaluate out-of-sample prediction. For the global
temperature data, we divide the sample into modeling and forecasting subsamples with
the latter consisting of the last 200 observations. We then apply the backtesting method
to compute the 1-step ahead prediction of the two competing models in Equations (3.9)
and (3.14). For the global temperature data with 200 1-step ahead out-of-sample
predictions, we obtain the following results:

Model RMSFE MAFE

Difference-stationary model in Equation (3.9) 14.526 11.167
Trend-stationary model in Equation (3.14) 15.341 11.966

Clearly, the difference-stationary model is preferred based on the 1-step ahead pre-
diction. The drop in RMSFE is about (15.341 − 14.526)/14.526 = 5.6%, a moderate
amount. This exercise also shows that time series models are useful in short-term
prediction because the RMSFEs of the two models are smaller than the unconditional
standard error 16.43 of the innovations of the fitted models. For the difference-
stationary model, the reduction in RMSFE is approximately (16.43 − 14.53)/14.53
= 13.1%.

R Demonstration

> source("backtest.R")
> pm1=backtest(m1,Gt,1368,1)
[1] "RMSE of out-of-sample forecasts"
[1] 14.52598
[1] "Mean absolute error of out-of-sample forecasts"
[1] 11.16746
> time=as.matrix(time)
> pm2=backtest(m2,Gt,1368,1,xre=time)
[1] "RMSE of out-of-sample forecasts"
[1] 15.34131
[1] "Mean absolute error of out-of-sample forecasts"
[1] 11.96595

3.2.4 Long-Term Prediction

Global warming is concerned with long-term prediction. In this section, we consider
and compare the performance of the two competing models in Equations (3.9) and
(3.14) using long-term prediction. Specifically, using August 2010, which gives the
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Figure 3.16. Long-term point and interval forecasts of the monthly global temperature

anomalies based on the difference-stationary model in Equation (3.9). The forecast origin is

August 2010 and the forecast horizon is 100 years.

last data point, as the forecast origin, we compute 1-step to 1200-step ahead pre-
dictions of the monthly global temperature anomalies. In other words, we use the
models built based on data of the past 131 years to predict the global temperatures
for the next 100 years. To compute the predictions of the trend-stationary model in
Equation (3.14), the time index is given. Figure 3.16 shows the point predictions and
the corresponding 95% interval forecasts of the global temperature anomalies based on
the difference-stationary model in Equation (3.9). The plot highlights several features
of the model. First, similar to other unit-root models, the long-term forecasts converge
to a constant represented by a horizontal line in the plot. The level of this horizontal
line depends on the forecast origin. Second, the length of the 95% interval forecasts
continues to grow with the forecast horizon. In fact, the length of the interval diverges
to infinity eventually. These two features have important implications in forecasting.
First, they indicate that the long-term forecasts are rather uncertain. This makes intu-
itive sense because long-term predictions of the model are dominated by its random
walk component and for a random walk the current value contains little information
about the future. Second, they demonstrate clearly that the model is only informative
in short-term prediction. To a great degree, this is true for most time series models
discussed in the book.

Turn to the trend-stationary model in Equation (3.14). Figure 3.17 shows the
point predictions and the corresponding 95% interval forecasts of global temperature
anomalies of the model. Again, the forecast origin is August 2010 and the forecast
horizon is 100 years. The plot also highlights the key features of the model. First,
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Figure 3.17. Long-term point and interval forecasts of the monthly global temperature

anomalies based on the trend-stationary model in Equation (3.14). The forecast origin is

August 2010 and the forecast horizon is 100 years.

because of the positive time slope, the predictions grow with the forecast horizon.
Second, the lengths of the interval forecasts are stable over time. In fact, the lengths
quickly converge to a constant with the constant being approximately 4 × σz , where σz
is the sample standard error of the innovation series zt . As stated in Equation (3.11), the
innovation series zt is stationary. As such the variances of the forecasts of zt converge
to its variance, σ 2

z , when the forecast horizon increases. For the trend-stationary model
in Equation (3.14), the prediction of the time trend is certain conditioned on the
coefficients β0 and β1 being fixed. The uncertainty in forecasts is determined by that
of zt . Consequently, the variances of forecast errors of the model in Equation (3.14)
converge to that of zt . As a matter of fact, the lengths of the forecast intervals match
well with the range of the data. These two features also have important implications
about the model. First, by imposing a time trend, the forecasts of the model diverge
to infinity as the forecast horizon increases. Is this reasonable? How certain are we
that the model is the true model for the global temperature anomalies? This type
of uncertainty is not shown by the model nor by its forecasts. Second, the finite
interval forecasts further confirm that the global temperature will continue to rise
under the model. This is very different from that of the difference-stationary model
in Equation (3.9).

Finally, we provide a direct comparison by plotting the long-term predictions of
the two competing models together. See Figure 3.18. The contrast between the two
models is clearly seen. On the other hand, the plot contains no information about
which model is more appropriate for the data, leading to the assertion that the two
models are not useful in long-term prediction.
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Figure 3.18. Point forecasts of the monthly global temperature anomalies based on two

competing models in Equations (3.9) and (3.14). The forecast origin is August 2010 and the

forecast horizon is 100 years.

3.2.5 Discussion

In this case study, we employed two models to show several important issues of
linear time series analysis. We demonstrated the process of model building and model
selection. The models built are useful in short-term prediction because their out-of-
sample root mean squares of forecast errors are smaller than their residual standard
errors. Both the in-sample AIC criterion and the 1-step ahead backtesting select the
difference-stationary model for the global temperature anomalies. On the other hand,
the selected models are not informative in long-term prediction. Other important issues
raised by the case study are summarized below.

Model Uncertainty. All statistical models are wrong; they simply provide
approximation to the underlying process. As such, statistical models contain uncer-
tainty not only in parameter estimates but also in the choice of the models themselves.
One should consider model uncertainty in making inference whenever possible. For
time series analysis, model uncertainty can be addressed by model averaging, for
example, combining forecasts. A simple approach to model averaging in forecasting
is to use the simple average among predictions of the competing models. For the
monthly global temperature anomalies, we can use the average of two predictions to
obtain a combined forecast. Again, this combination is useful mainly in short-term
prediction.

Short versus Long-term Forecasts. The difference between short- and long-
term predictions shows that in time series analysis the choice of a model may depend
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on the forecast horizon. The best model for 1-step ahead prediction might be different
from that for 2-step ahead prediction. This type of ideas has been explored in the
literature and leads to the development of adaptive forecast . See Tiao and Tsay (1994)
and references therein.

Trend-Shift Model. To demonstrate the arbitrariness (or subjectivity) involved
in using linear time trend model, we consider an alternative specification. Recall that
the time plot in Figure 3.8 shows an increase in time slope around 1980. This feature
has led some analysts to employ a trend-shift model. Specifically, consider the model

Gt = β0 + β1t + β2xt + nt , (3.15)

where xt is defined as

xt =
{

0 if t ≤ 1212,

t if 1212 < t ≤ 1568,
(3.16)

where t = 1212 corresponds to December 1980. This simple model allows the time
slope to change at the beginning of 1981. Specifically, the time slope is β1 before
January 1981 and is β1 + β2 starting in 1981. The parameter β2 thus denotes the
change in time slope. If β2 is positive, the time slope jumps from β1 to β1 + β2
in January 1981. The time plot of β1t + β2xt would show a jump and a change of
direction in January 1981 so that the model in Equation (3.15) is referred to as a
trend-shift model.

For the global temperature anomalies, we obtain the model

Gt = −28.92 + 0.0313t + 0.0214xt + nt ,

where all estimates are highly significant. This regression model says that the time
slope for the monthly global temperature was 0.0313 before January 1981 and it
increased to 0.0527 thereafter. The increase was statistically significant. The sample
ACFs and PACFs of the innovation series zt of the prior regression model are similar
to those of the model in Equation (3.11). Therefore, we employ the same ARMA
model for zt . The resulting model for the monthly global temperature anomalies is

(1 − 1.122B + 0.197B2)(1 − B)zt = (1 − 0.684B)(1 + 0.0823B24)at , (3.17)

where zt = Gt + 29.263 − 0.317t − 0.0219xt , σ 2
a = 267.5, and all coefficient esti-

mates are significantly different from zero. The AIC of the model is 13,230, which is
smaller than those of the two competing models built before. The diagnostic checking
plots of this trend-shift model are similar to those of Equation (3.14), indicating that
model (3.17) is also adequate for the monthly global temperature anomalies. Note that
this refined model shows some improvements over that of Equation (3.14) because its
residual variance reduces to 267.5.
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The significance of the slope change 0.0219 in January 1981 suggests that, under
the postulated trend-shift model, the global warming has accelerated in recent years.
The monthly temperature change increased from 0.0317 to 0.0536 starting in January
1981.

Finally, on the basis of the AIC, the trend-shift model in Equation (3.17) is
preferred over the two competing models discussed before. This is not surprising
because we impose a trend shift after examining the data. One can further improve
the in-sample fit by employing a more flexible polynomial trend for the data. This
type of improvement is not recommended in general because it can easily lead to
over-fitting in a real application. Furthermore, long-term forecasts of such models do
not take into account the possibility of slope changes in the future.

R Demonstration

> Gt=scan(file=‘m-GLBTs.txt’)
> time=c(1:1568)
> time1=c(rep(0,1212),time[1213:1568])
> mm1=lm(Gt∼time+time1)
> summary(mm1)
lm(formula = Gt ∼time + time1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.924419 1.191061 -24.29 <2e-16 ***
time 0.031330 0.001702 18.40 <2e-16 ***
time1 0.021397 0.001318 16.23 <2e-16 ***
---
Residual standard error: 20.79 on 1565 degrees of freedom
Multiple R-squared: 0.5887, Adjusted R-squared: 0.5882
F-statistic: 1120 on 2 and 1565 DF, p-value: < 2.2e-16

> x1=cbind(time,time1)
> mm1=arima(Gt,order=c(2,0,1),seasonal=list(order=c(0,0,1),period=24),
xreg=x1)

> mm1
arima(x=Gt,order=c(2,0,1),seasonal=list(order=c(0,0,1),period=24),xreg=x1)

Coefficients:
ar1 ar2 ma1 sma1 intercept time time1

1.1220 -0.1973 -0.6835 0.0823 -29.2630 0.0317 0.0219
s.e. 0.0727 0.0542 0.0643 0.0239 4.1411 0.0058 0.0044

sigma^2 estimated as 267.5: log likelihood = -6607, aic = 13230
> tsdiag(mm1,gof=36)
> Box.test(mm1$residuals,lag=8,type=‘Ljung’)

Box-Ljung test

data: mm1$residuals
X-squared = 15.4598, df = 8, p-value = 0.0508

Other Data Set. There exist other time series measuring the monthly global
temperature anomalies. See, for instance, the series given in NCDC, NOAA mentioned
before. This series measured in degrees of Celsius is close, but not identical, to that
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of GISS used in our case study. The basic characteristics of the data, however, are the
same. As a matter of fact, the same models apply to this new series. Thus, the choice
of data sets does not affect the general conclusions of the analysis. For example,
consider the trend-stationary model. We have

(1 − 1.298B + 0.306B2)(yt + 0.495 − 0.000661t) = (1 − 0.934B)(1 − 0.083B24)at ,

where yt denotes the monthly global temperature anomalies, σ 2
a = 0.0883 and all

coefficient estimates are statistically significant at the 5% level. The time slope is
0.000661, implying that the global temperature increases on an average 0.00793 ◦C
per year. This is slightly greater than 0.00635 ◦C suggested by the GISS data set. The
difference, however, appears to be statistically not significant.

R Demonstration

> da=read.table("m-ncdc-noaa-glbtemp.txt")
> head(da)

V1 V2 V3
1 1880 1 -0.0405
2 1880 2 -0.6112
...
> tail(da)

V1 V2 V3
1568 2010 8 0.8970
1569 2010 9 -999.0000
....
1572 2010 12 -999.0000
> da=da[1:1568,]
> temp=da[,3]
> m3=arima(temp,order=c(1,1,2),seasonal=list(order=c(0,0,1),period=24))
> m3
arima(x=temp,order=c(1,1,2),seasonal=list(order=c(0,0,1),period=24))

Coefficients:
ar1 ma1 ma2 sma1

0.5817 -1.2414 0.2639 0.0854
s.e. 0.0704 0.0827 0.0781 0.0243

sigma^2 estimated as 0.0881: log likelihood = -321.11, aic = 652.21
> tsdiag(m3,gof=36)
> m4=arima(temp,order=c(2,0,1),seasonal=list(order=c(0,0,1),period=24),
xreg=time)

> m4
arima(x=temp,order=c(2,0,1),seasonal=list(order=c(0,0,1),period=24),

xreg = time)

Coefficients:
ar1 ar2 ma1 sma1 intercept time

1.2975 -0.3057 -0.9344 0.0827 -0.4952 7e-04
s.e. 0.0562 0.0480 0.0430 0.0255 0.1178 1e-04

sigma^2 estimated as 0.08825: log likelihood=-322.2, aic=658.4
> m4$coef

ar1 ar2 ma1 sma1 intercept
1.2974716910 -0.3056922789 -0.9343898897 0.0826971 -0.4952302
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time
0.0006613375
> sqrt(diag(m4$var.coef))

ar1 ar2 ma1 sma1 intercept time
0.0561629 0.048026 0.0429865 0.02545154 0.11775435 0.00013652
> m4$coef/sqrt(diag(m4$var.coef)) % Compute t-ratios

ar1 ar2 ma1 sma1 intercept time
23.101928 -6.365140 -21.736831 3.249198 -4.205621 4.8441
> tsdiag(m4,gof=36)
> %%% Backtesting
> pm3=backtest(m3,temp,1368,1)
[1] "RMSE of out-of-sample forecasts"
[1] 0.3160872
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.2361009
> pm4=backtest(m4,temp,1368,1,xre=time)
[1] "RMSE of out-of-sample forecasts"
[1] 0.3270271
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.241655

3.3 US MONTHLY UNEMPLOYMENT RATES

The persistently high unemployment rate is a serious problem that many nations have
been facing in recent years. The seasonally adjusted monthly rate in the United States
remains around 9% in 2011 and declines slowly. In this case study, we consider
the problem of modeling and forecasting monthly US unemployment rate with and
without using the information of weekly initial jobless claims. The data used are from
the US Bureau of Labor Statistics, Department of Labor, and seasonally adjusted. The
unemployment rate, in percentage, is the civilian unemployment rate for persons 16
years of age and older and the weekly initial jobless claims denote the number of
new unemployment insurance claims. The unemployment rate is from January 1948
to September 2010 and reported on the first day of each month. The weekly initial
jobless claims are available from January 7, 1967, to August 28, 2010, and reported
on Saturdays.

The objectives of this case study include (i) to demonstrate data analysis with
mixed frequencies, that is, monthly and weekly data, (ii) to emphasize the potential
model mis-specification in using seasonally adjusted data, and (iii) to illustrate that
trial and error based on prior experience can be helpful in model specification.

3.3.1 Univariate Time Series Models

We begin with time series models that use only the dynamic dependence of the unem-
ployment rates. As such, we can employ the data from January 1948 to September
2010 with 753 observations. Figure 3.19 shows the time plot of US monthly unem-
ployment rate. The asterisk of the plot denotes the seasonally adjusted unemployment
rate. The plot shows several characteristics of the series. First, as expected, unem-
ployment rates exhibit strong cyclical pattern signifying expansions and contractions
of the US economy. The pattern does not have a fixed period because economic
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Figure 3.19. US monthly unemployment rates from January 1948 to September 2010. Asterisk

denotes observations. Data are seasonally adjusted.

expansions and contractions have no fixed durations. Second, the unemployment rates
show an upward trend. There are several possible explanations for the trend, including
the increases in labor forces and participations, and advances in technology. Third,
the unemployment rate rose quickly and declined slowly. This asymmetric behavior
indicates that unemployment rates do not follow a linear time series model. Indeed,
several researchers have employed nonlinear models for the unemployment rates. See,
for instance, Tsay (2010, Chapter 4) and the references therein. As stated earlier in the
introduction, there is no true model for a given time series and all statistical models
are approximations. We shall not entertain nonlinear models in our analysis. Instead,
we focus on linear approximations.

Let xt be the monthly unemployment rate. Figure 3.20 gives the sample ACF
and PACF of xt and its differenced series (1 − B)xt . The sample ACFs of xt are high
and persistent reflecting the upward trend of the data. On the other hand, the sample
ACFs and PACFs of the differenced data, (1 − B)xt , are relatively small and decay
quickly. A careful examination shows some basic features of the sample ACFs and
PACFs of (1 − B)xt . First, even though the data are seasonally adjusted, the ACFs
and PACFs are significant at lags 12, 24, and 36, indicating that seasonality of the data
is not completely removed. This is not uncommon for seasonally adjusted data, and
a seasonal model is needed for the seasonally adjusted unemployment rates. Second,
the sample ACFs and PACFs of (1 − B)xt at the seasonal lags are relatively small
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Figure 3.20. Sample and partial autocorrelations of the monthly unemployment rates and

their first differenced series.

in magnitude, around 0.15, but they decay slowly. As a matter of fact, the PACFs at
the seasonal lags shown in Figure 3.20 do not decay at all. This feature is similar to
the behavior of regular sample ACFs and PACFs of a fractionally differenced series,
that is, a long-memory series. As stated in Chapter 2, an ARMA model that can
approximate long-memory time series is an ARMA(1,1) model with similar AR and
MA coefficients. For seasonal data, this means that the model for seasonal component
is a seasonal ARMA(1,1) model with period 12. Third, focusing on the regular sample
ACFs and PACFs, we see that both ACFs and PACFs have approximately five or six
significant lags, and the PACFs show a rough pattern of exponential decay. This latter
feature suggests p = 1 and q = 5. Consequently, we tentatively specify the model

(1 − �B12)(1 − φB)(1 − B)xt = (1 − θ1B − · · · − θ5B5)(1 − �B 12)at ,

for the monthly unemployment rate. The values of � and � should be close. This
specification is rather complicated and not easy for inexperienced analysts. We shall
consider some alternative models later.

On the basis of data from January 1948 to September 2010, we obtain the fitted
model

(1 − 0.60B12)(1 − 0.73B)(1 − B)xt = (1 − 0.75B + 0.22B2 + 0.01B3

+ 0.04B4 + 0.08B5)(1 − 0.85B12)at ,
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Figure 3.21. Model checking statistics of model 3.18 for monthly unemployment rates. (a)

Standardized residuals, (b) ACF of residuals, (c) p-values for Ljung–Box statistic.

where σ 2
a = 0.0364. The MA coefficients at lags 3 and 4 are insignificant because

their standard errors are 0.05 and 0.047, respectively. Therefore, we remove these two
coefficients and refine the model as

(1 − 0.61B12)(1 − 0.75B)(1 − B)xt = (1 − 0.77B + 0.24B2 + 0.099B5)

(1 − 0.85B 12)at , (3.18)

where σ 2
a = 0.0365 and the standard errors of the coefficient estimates are, in the order

of appearance, 0.065, 0.057, 0.065, 0.037, 0.039, and 0.046, respectively. All estimates
are significantly different from zero. The AIC of model (3.18) is −337.5. Figure 3.21
shows some plots of diagnostic checking for model (3.18). Except for one or two
big outliers at the beginning of the series, the fitted model is adequate. The ACFs
of the residuals and the associated Ljung–Box statistics fail to indicate any model
inadequacy.
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R Demonstration

> da=read.table("m-unrate.tct",header=T)
> dim(da)
[1] 753 4
> head(da)
Year mon dd rate

1 1948 1 1 3.4
......
6 1948 6 1 3.6
> unemp=da$rate
> unrate=ts(unemp,frequency=12,start=c(1948,1))
> plot(unrate,xlab=‘year’,ylab=‘unrate’,type=‘l’)
> par(mfcol=c(2,2))
> acf(unemp,lag=36)
> pacf(unemp,lag=36)
> acf(diff(unemp),lag=36)
> pacf(diff(unemp),lag=36)
> m1=arima(unemp,order=c(1,1,5),seasonal=list(order=c(1,0,1),period=12)
> m1
arima(x=unemp,order=c(1,1,5),seasonal=list(order=c(1,0,1),period=12))
Coefficients:

ar1 ma1 ma2 ma3 ma4 ma5 sar1 sma1
0.7301 -0.7468 0.2194 0.0073 0.0383 0.0831 0.5978 -0.8469

s.e. 0.0686 0.0776 0.0462 0.0501 0.0467 0.0431 0.0672 0.0477

sigma^2 estimated as 0.03643: log likelihood = 176.43,aic=-334.87
> c1=c(NA,NA,NA,0,0,NA,NA,NA)
> m1=arima(unemp,order=c(1,1,5),seasonal=list(order=c(1,0,1),period=12),
fixed=c1)

> m1
arima(x=unemp,order=c(1,1,5),seasonal=list(order=c(1,0,1),period=12),

fixed = c1)

Coefficients:
ar1 ma1 ma2 ma3 ma4 ma5 sar1 sma1

0.7536 -0.7744 0.2351 0 0 0.0990 0.6051 -0.8525
s.e. 0.0569 0.0650 0.0365 0 0 0.0386 0.0654 0.0457

sigma^2 estimated as 0.03649: log likelihood = 175.75,aic=-337.5
> tsdiag(m1,gof=36)
> Box.test(m1$3$residuals,lag=24,type=‘Ljung’)
Box-Ljung test
data: m3$residuals
X-squared = 23.349, df = 24, p-value = 0.4993

> Box.test(m1$residuals,lag=36,type=‘Ljung’)
Box-Ljung test

data: m3$residuals
X-squared = 32.4586, df = 36, p-value = 0.6378

3.3.2 An Alternative Model

An alternative model, which is easier to specify, for the monthly unemployment rates
can be obtained by a two-step procedure. In the first step, we focus on the seasonal
pattern of the data. As stated in the previous section, the behavior of sample ACFs
and PACFs of (1 − B)xt at the seasonal lags suggests a seasonal ARMA(1,1) model
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with period 12, see Figure 3.20. Therefore, we start with the model

(1 − �B12)(1 − B)xt = (1 − �B 12)at .

The fitted model is

(1 − 0.62B12)(1 − B)xt = (1 − 0.87B12)bt , σ 2
b = 0.043, (3.19)

where bt denotes the residual series. This model is inadequate for the data, but its resid-
ual bt should be approximately free of seasonality. Indeed, this is the case. Figure 3.22
shows the sample ACF and PACF of the residual series bt . As expected, the ACFs
and PACFs at the seasonal lags are no longer significant at the 5% level. In the second
step, we specify a regular ARMA model for bt . On the basis of the sample PACF in
Figure 3.22, we can easily identify an AR(5) model for bt because the PACF cuts off
at lag 5. From Equation (3.19), we have

bt = (1 − 0.62B12)(1 − B)

1 − 0.82B12
xt .

With an AR(5) specification for bt , we have

(1 − φ1B − · · · − φ5B5)bt = at .

Putting the previous two equations together, we obtain a model for xt as

(1 − φ1B − · · · − φ5B5)(1 − �B12)(1 − B)xt = (1 − �B12)at .

The fitted model is

(1 + 0.01B − 0.21B 2 − 0.17B3 − 0.10B4 − 0.12B5)(1 − 0.56B12)(1 − B)xt

= (1 − 0.82B12)at , σ 2
a = 0.037.

Since the lag-1 coefficient is insignificant at the 5% level, we refine the model as

(1 − 0.21B2 − 0.17B3 − 0.10B4 − 0.12B5)(1 − 0.56B12)(1 − B)xt

= (1 − 0.82B12)at , σ 2
a = 0.037, (3.20)

where the standard errors of the coefficient estimates are 0.037, 0.036, 0.036, 0.036,
0.072, and 0.053, respectively. All estimates are statistically significant at the 5% level
and the AIC of the model is −335.02. Figure 3.23 shows some diagnostic plots for the
model in Equation (3.20). Again, except for one or two big outliers in the beginning
of the series, the model is adequate.
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Figure 3.22. Sample ACF and PACF of the residuals of Equation (3.19) for US monthly

unemployment rates.

R Demonstration

> mm=arima(unemp,order=c(0,1,0),seasonal=list(order=c(1,0,1),period=12))
> mm
arima(x=unemp,order=c(0,1,0),seasonal=list(order=c(1,0,1),period=12))

Coefficients:
sar1 sma1

0.6195 -0.8670
s.e. 0.0658 0.0468

sigma^2 estimated as 0.04267: log likelihood = 116.9,aic=-227.8
> par(mfcol=c(2,1))
> acf(mm$residuals,lag=24)
> pacf(mm$residuals,lag=24)
> mm1=arima(unemp,order=c(5,1,0),seasonal=list(order=c(1,0,1),period=12))
> mm1
arima(x=unemp,order=c(5,1,0),seasonal=list(order=c(1,0,1),period=12))

Coefficients:
ar1 ar2 ar3 ar4 ar5 sar1 sma1

-0.0124 0.2101 0.1682 0.1024 0.1207 0.5624 -0.8233
s.e. 0.0365 0.0366 0.0366 0.0370 0.0366 0.0723 0.0526

sigma^2 estimated as 0.03663: log likelihood = 174.57, aic=-333.13
> cc1=c(0,NA,NA,NA,NA,NA,NA)
> mm1=arima(unemp,order=c(5,1,0),seasonal=list(order=c(1,0,1),period=12),
fixed=cc1)
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Figure 3.23. Model checking statistics of model (3.20) for US monthly unemployment rates.

(a) Standardized residuals, (b) ACF of residuals, (c) p-values for Ljung–Box statistic.

> mm1
arima(x=unemp,order=c(5,1,0),seasonal=list(order=c(1,0,1),period=12),

fixed = cc1)

Coefficients:
ar1 ar2 ar3 ar4 ar5 sar1 sma1
0 0.2104 0.1652 0.0996 0.1194 0.5643 -0.8240

s.e. 0 0.0366 0.0355 0.0362 0.0364 0.0724 0.0528

sigma^2 estimated as 0.03664: log likelihood = 174.51,aic=-335.02
> tsdiag(mm1,gof=36)
% Backtesting
> source("backtest.R")
> pm1=backtest(m1,unemp,700,1,fixed=c1,inc.mean=F)
[1] "RMSE of out-of-sample forecasts"
[1] 0.1662391
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.1349363
>
> pmm1=backtest(mm1,unemp,700,1,fixed=cc1,inc.mean=F)
[1] "RMSE of out-of-sample forecasts"
[1] 0.1679285
[1] "Mean absolute error of out-of-sample forecasts"
[1] 0.1350412
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3.3.3 Model Comparison

It is interesting to compare the two models in Equations (3.18) and (3.20) for the US
monthly unemployment rates. Both models are adequate based on the usual model
checking statistics. For in-sample comparison, the AICs of the two models are −337.5
and −335.02, respectively. Thus, the model in Equation (3.18) is preferred according
to AIC. For out-of-sample comparison, we divide the data into modeling and fore-
casting subsamples with the latter consisting of the last 53 observations. The results
of forecasting performance are as follows:

Model RMSFE MAFE
Model in Equation (3.18) 0.1662 0.1349
Model in Equation (3.20) 0.1679 0.1350

Again, the model in Equation (3.18) slightly outperforms the model in Equation
(3.20). But the improvement is so small, there is hardly any difference between the
two models.

In short, there is no significant difference between the two models. Either one of
them can be used to make inference about US monthly unemployment rates. To further
demonstrate the closeness between the two models, we ignore the seasonal components
and consider the π-weights of model in Equation (3.18). These weights are

1 − 0.75B

1 − 0.77B + 0.24B2 + 0.099B5
≈ 1 + 0.02B − 0.22B2

− 0.174B3 − 0.081B 4 − 0.119B 5.

The π-weights are close to the AR(5) coefficients of the model in Equation (3.20).
Consequently, the two models are indeed very close.

3.3.4 Use of Initial Jobless Claims

In this section, we make use of the information embedded in the weekly initial jobless
claims to predict the monthly unemployment rates. To this end, we use a shorter data
span because the numbers of initial jobless claims were only available starting from
January 1967. Again, all data were seasonally adjusted. As the unemployment rates
were reported on the first day of each month, we use the weekly initial jobless claims
in the previous month as explanatory variables. As such, the actual data span for the
unemployment rates was from February 1967 to September 2010 and that for the
initial jobless claims was from January 1967 to August 2010. The effective sample
size is 524.

Because the data of initial jobless claims are weekly, we consider two categories
of explanatory variables. In the first category, we add the weekly numbers within each
month to form a monthly number of initial jobless claims. In the second category,



166 CASE STUDIES OF LINEAR TIME SERIES

we directly use the weekly data of initial jobless claims. Again, let xt be the monthly
unemployment rates. Then, the explanatory variables considered are w1,t−1, w2,t−1,
w3,t−1, w4,t−1, and ct−1, where wi ,t−1 is the number of initial jobless claims in week
i of month t − 1 and ct−1 is the total number of initial jobless claims in month t − 1.
Note that some months have 5 weeks so that ct−1 may not be equal to

∑4
i=1 wi ,t−1.

Also, for numerical stability, the initial jobless claims were divided by 1,000,000.

Using Monthly Initial Jobless Claims. Figure 3.24 shows the time plots
of monthly unemployment rates xt and numbers of initial jobless claims ct−1 from
February 1967 to September 2010. As expected, the two series show a general pattern
of co-movement. Our analysis starts with a simple linear regression model

xt = 1.52 + 2.905ct−1 + nt , (3.21)

where nt denotes the error term and the standard errors of the two coefficients are 0.179
and 0.110, respectively. The adjusted R-squared of the regression is 57.23%, indicating
that the monthly number of jobless claims explains about half of the variation of
unemployment rates. As nt is not a white noise series, the prior linear regression model
is inadequate. Figure 3.25 gives the sample ACF and PACF of the residual series nt .
The ACFs decay slowly, indicating that there remains strong serial dependence in the
residual series nt . The PACFs show large values at the first three lags and significant
values at the seasonal lags 12 and 36. It is, however, not easy to specify a model for
nt from its sample ACF and PACF.

To overcome the difficulty in model specification, we use trial and error and some
prior knowledge. First, the significance of seasonal ACF and PACF indicates that we
should continue to employ a seasonal ARMA(1,1) model with period 12. Second, the
unemployment rates show a clear cyclical pattern, that is, existence of certain business
cycles. This suggests that some characteristic roots of the model for unemployment
rates are complex numbers, see Chapter 2. Therefore, the AR order p satisfies p ≥ 2.
For simplicity, we assume p = 2. Finally, the ACFs in Figure 3.25 do not show any
clear pattern of exponential decay or damping sine function. This indicates that the
MA order q is positive. For simplicity, we try q = 3. Consequently, we tentatively
specify the model

(1 − φ1B − φ2B2)(1 − �B12)(xt − β0 − β1ct−1)

= (1 − θ1B − · · · − θ3B3)(1 − �B12)at ,

for the unemployment rates. The fitted model is

(1 − 1.900B + −.902B2)(1 − 0.65B12)(xt − 6.04 − 0.077ct−1)

= (1 − 0.893B + 0.146B2 + 0.056B3)(1 − 0.85B12)at , σ 2
a = 0.0242,
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Figure 3.24. Time plots of US monthly unemployment rates and numbers of initial jobless

claims from February 1967 to September 2010. Numbers of initial jobless claims were divided

by 1,000,000 and shifted by 1 month.

where all estimates, but the MA(3) coefficient, are significant at the 5% level. The
model checking statistics indicate that the model is adequate. Therefore, we refine the
model as

(1 − 1.912B + 0.915B2)(1 − 0.65B12)(xt − 6.11 − 0.078ct−1)

= (1 − 0.910B + 0.186B2)(1 − 0.85B12)at , σ 2
a = 0.0243. (3.22)

The standard errors of the coefficient estimates are, in the order of appearance, 0.028,
0.028, 0.082, 0.375, 0.021, 0.053, 0.049, and 0.059, respectively. Figure 3.26 provides
some plots of model checking for the model in Equation (3.22). The plots indicate
that the model is adequate. The AIC of the model is −435.93.

Remark. For initial model specification, we used an ARMA(2,3) model for the reg-
ular component of the unemployment rate. In fact, one can use an ARMA(2,q) model
for 2 ≤ q ≤ 5 and obtain the same final model in Equation (3.22). �

R Demonstration

> da=read.table("m-unrateic.txt",header=T)
> head(da)

year mon dd rate w1m1 w2m1 w3m1 w4m1 icm1
1 1967 2 1 3.8 208 207 217 204 836
....
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Figure 3.25. Sample ACF and PACF of the residual series of linear regression in Equation

(3.21).

6 1967 7 1 3.8 248 238 224 218 928
> unrate=da$rate
> x=da[,5:9]/1000
> nm1=lm(unrate∼icm1,data=x)
> summary(nm1)
Call: lm(formula = unrate ∼icm1, data = x)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5202 0.1785 8.518 <2e-16 ***
icm1 2.9047 0.1097 26.475 <2e-16 ***

---
Residual standard error: 1.051 on 522 degrees of freedom
Multiple R-squared: 0.5731, Adjusted R-squared: 0.5723

> par(mfcol=c(2,1))
> acf(nm1$residuals,lag=36)
> pacf(nm1$residuals,lag=36)
> nm1=arima(unrate,order=c(2,0,3),xreg=x[,5],seasonal=list(order=c(1,0,1),
period=12))
> nm1 arima(x=unrate,order=c(2,0,3),seasonal=list(order=c(1,0,1),period=12),
xreg = x[, 5])

Coefficients:
ar1 ar2 ma1 ma2 ma3 sar1 sma1 intercept

1.8997 -0.9021 -0.8932 0.1458 0.0555 0.6501 -0.8520 6.0373
s.e. 0.0332 0.0331 0.0543 0.0565 0.0466 0.0824 0.0586 0.3706

icm1
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Figure 3.26. Diagnostic plots of model (3.22) for the monthly unemployment rates with

monthly initial jobless claims. The data are from February 1967 to September 2010. (a)

Standardized residuals, (b) ACF of residuals, (c) p-values for Ljung–Box statistic.

0.0772
s.e. 0.0212

sigma^2 estimated as 0.02419: log likelihood = 227.7, aic=-435.39
> nm1=arima(unrate,order=c(2,0,2),seasonal=list(order=c(1,0,1),period=12),
xreg=x[,5])

> nm1 arima(x=unrate,order=c(2,0,2),seasonal=list(order=c(1,0,1),period=12),
xreg = x[, 5])

Coefficients:
ar1 ar2 ma1 ma2 sar1 sma1 intercept x[, 5]

1.9123 -0.9145 -0.9100 0.1860 0.6465 -0.8483 6.1111 0.0782
s.e. 0.0283 0.0282 0.0527 0.0479 0.0823 0.0591 0.3748 0.0213

sigma^2 estimated as 0.02426: log likelihood = 226.97, aic=-435.93
> tsdiag(nm1,gof=36)

Using Weekly Initial Jobless Claims. Figure 3.27 shows the time plots of
monthly unemployment rates xt and the weekly number of initial jobless claims for
the first two weeks of each month. All three plots show a similar cyclical pattern,
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indicating that weekly data might be helpful in predicting the monthly unemployment
rates. An advantage of using the data of initial jobless claims of the first two weeks
in a month is that they provide a longer lead time in prediction as compared with
monthly initial jobless claims. We use data of the first two weeks of each month based
on the following results:

xt = 0.516 + 6.522w1,t−1 + 9.671w2,t−1 − 2.446w3,t−1 + 1.663w4,t−1 + et , (3.23)

where σe = 0.884 and the standard errors of the coefficient estimates are 0.165, 2.115,
2.863, 2.798, and 2.062, respectively. The wi ,t−1 have high correlations so that the
standard errors of their coefficient estimates are relatively large. From the multiple
linear regression in Equation (3.23), we only need claim data of the first two weeks.
In addition, even with the monthly data of initial jobless claims, we found that only
data of the first two weeks are needed:

xt = 0.511 + 6.391w1,t−1 + 8.465w2,t−1 + 0.131ct−1 + et ,

where standard errors of the coefficient estimates are 0.165, 2.075, 2.237, and 0.211,
respectively. The coefficient of ct−1 is not statistically significant at the 5% level. In
summary, with weekly data of initial jobless claims, we employ the linear regression

xt = 0.513 + 6.459w1,t−1 + 8.961w2,t−1 + nt , (3.24)

where the standard error of nt is 0.883 and the standard errors of the coefficient
estimates are 0.165, 2.071, and 2.087, respectively.

Figure 3.28 shows the sample ACF and PACF of the multiple linear regression
model in Equation (3.24). The ACF decays slowly, but the PACF only has a few signif-
icant values. The behavior of ACF and PACF in Figure 3.28 is similar to that of ACF
and PACF in Figure 3.25. The main difference is that the ACF in Figure 3.28 appears
to be smoother. Consequently, we specify a similar model for the unemployment rate:

(1 − φ1B − φ2B 2)(1 − �B12)(xt − β0 − β1w1,t−1 − β2w2,t−1)

= (1 − θ1B − θ2B2)(1 − �B12)at .

The fitted model is

(1 − 1.917B + 0.920B 2)(1 − 0.611B12)(xt − 5.656 − 0.427w1,t−1 − 0.969w2,t−1)

= (1 − 0.996B + 0.253B2)(1 − 0.79B12)at , σ 2
a = 0.024, (3.25)

where the standard errors of the estimates are, in the order of appearance, 0.027, 0.027,
0.112, 0.391, 0.272, 0.321, 0.056, 0.051, and 0.088, respectively. All estimates, but the
coefficient of w1,t−1, are significant at the 5% level. The t-ratio of the coefficient of
w1,t−1 is 1.57, which is marginally significant with p-value 0.12. Figure 3.29 shows
some diagnostic plots of the model in Equation (3.25). The plots indicate that the
model is adequate for the monthly unemployment rates. The AIC of the model is
−440.59, which is smaller than that of the model in Equation (3.22).
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Figure 3.27. Time plots of monthly US unemployment rates and weekly numbers of initial

jobless claims from February 1967 to September 2010. The claim data are the numbers of the

first two weeks of each month at time t − 1.

R Demonstration

> nm2=lm(unrate∼w1m1+w2m1+w3m1+w4m1,data=x)
> summary(nm2)
lm(formula = unrate ∼w1m1 + w2m1 + w3m1 + w4m1, data = x)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5160 0.1651 3.125 0.001877 **
w1m1 6.5221 2.1145 3.084 0.002148 **
w2m1 9.6711 2.8630 3.378 0.000785 ***
w3m1 -2.4455 2.7980 -0.874 0.382506
w4m1 1.6626 2.0624 0.806 0.420528
---
Residual standard error: 0.8841 on 519 degrees of freedom

> nm2=lm(unrate∼w1m1+w2m1+icm1,data=x)
> summary(nm2)
lm(formula = unrate ∼w1m1 + w2m1 + icm1, data = x)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5111 0.1648 3.101 0.002033 **
w1m1 6.3906 2.0751 3.080 0.002182 **
w2m1 8.4654 2.2365 3.785 0.000171 ***
icm1 0.1307 0.2110 0.619 0.535950
---
Residual standard error: 0.8837 on 520 degrees of freedom
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Figure 3.28. Sample ACF and PACF of the residual series of linear regression model in

Equation (3.24).

> nm2=lm(unrate∼w1m1+w2m1,data=x)
> summary(nm2)
lm(formula = unrate ∼w1m1 + w2m1, data = x)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5127 0.1647 3.113 0.00195 **
w1m1 6.4594 2.0709 3.119 0.00191 **
w2m1 8.9609 2.0872 4.293 2.1e-05 ***
---
Residual standard error: 0.8832 on 521 degrees of freedom
Multiple R-squared: 0.6993, Adjusted R-squared: 0.6981
> acf(nm2$residuals,lag=36)
> pacf(nm2$residuals,lag=36)
> nm2=arima(unrate,order=c(2,0,2),seasonal=list(order=c(1,0,1),
period=12),xreg=x[,1:2])

> nm2
arima(x=unrate,order=c(2,0,2),seasonal=list(order= c(1,0,1),period=12),

xreg = x[, 1:2])

Coefficients:
ar1 ar2 ma1 ma2 sar1 sma1 intercept w1m1

1.9172 -0.9197 -0.9958 0.2532 0.6111 -0.7915 5.6555 0.4265
s.e 0.0269 0.0268 0.0563 0.0507 0.1119 0.0883 0.3912 0.2721

w2m1
0.9693

s.e. 0.3206

sigma^2 estimated as 0.024: log likelihood = 230.29, aic=-440.59
> tsdiag(nm2,gof=36)
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Figure 3.29. Model checking plots of model (3.25) for the monthly US unemployment rates

from February 1967 to September 2010. (a) Standardized residuals, (b) ACF of residuals, (c)

p-values for Ljung–Box statistic.

3.3.5 Comparison

We have entertained two relatively complicated models for the monthly unemployment
rates. These two models made use of the information in initial jobless claims. For
comparison purpose, we also built a time series for the unemployment rates from
February 1967 to September 2010. The fitted model is

(1 − 0.901B)(1 − B)(1 − 0.625B12)xt = (1 − 0.868B + 0.170B2)(1 − 0.83B12)at ,
(3.26)

where σ 2
a = 0.0252 and the standard errors of the coefficient estimates are 0.031,

0.084, 0.053, 0.047, and 0.062, respectively. All estimates are statistically significant
at the 5% level. Model checking, not shown, also fails to reject the adequacy of the
model. The AIC of this pure time series model is −426.17.

It is interesting to compare the three models. For in-sample comparison, the
AIC selects the model in Equation (3.25), indicating that numbers of initial jobless
claims of the first two weeks of the previous month are helpful in explaining the
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variability of monthly unemployment rates. Between the models in Equations (3.22)
and (3.26), AIC also supports the usefulness of monthly numbers of initial jobless
claims. For out-of-sample comparison, we, again, divided the data into modeling and
forecasting subsamples with the latter consisting of the last 53 observations. The
results of backtesting are given below:

Model RMSFE MAFE
Equation (3.22) with monthly initial jobless claims 0.1706 0.1454
Equation (3.25) with weekly initial jobless claims 0.1683 0.1372
Pure time series model in Equation (3.26) 0.1684 0.1370

Clearly, there is no major difference in out-of-sample forecasting between the
three models. Granted that out-of-sample forecasting performance depends on the
choice of forecasting subsamples, our simple exercise indicates that numbers of initial
jobless claims are of limited value in predicting the seasonally adjusted monthly
unemployment rate. This case study, thus, highlights the difference between in-sample
and out-of-sample model comparisons.

The similarity of the three competing models in Equations (3.22), (3.25),
and (3.26) can also be seen as follows: First, the seasonal components of the
three models are close. They all show the inadequacy of the seasonal adjust-
ment method used. Second, even though we did not impose a unit root on the
models in Equations (3.22) and (3.25), the estimation results hint strongly the
presence of a unit root. The regular AR polynomials of the two models can
be written approximately as 1 − 0.912B + 0.915B2 ≈ (1 − 0.912B)(1 − B) and
1 − 1.917 + 0.920B2 ≈ (1 − 0.917B)(1 − B). These factorizations are close to
(1 − 0.901B)(1 − B) of the model in Equation (3.26). It is then understandable that
the 1-step ahead predictions of the three models are similar.

EXERCISES

1. Consider the monthly unemployment rates of the State of California and United
States from January 1976 to September 2011. The data are in the file m-CAUS-
7611.txt (year, mon, CA, US).
(a) Build a pure time series model for the monthly unemployment rates of

California. Perform model checking and write down the fitted model.
(b) Build a time series model for the monthly unemployment rates of Cali-

fornia using the lag-1 US monthly unemployment rate as an explanatory
variable. Perform model checking and write down the fitted model.

(c) Let the forecasting period be from January 2008 to September 2011. Com-
pare the two models using out-of-sample forecasts.

2. Consider the US monthly 30-year conventional mortgage rates from April
1971 to November 2011. The data are available from FRED and are in the file
m-morgfed-7111.txt (year, mon, day, morg, fed).
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(a) Build a pure time series model for the monthly mortgage rate. Perform
model checking and write down the fitted model.

(b) Mortgage rate is known to depend on the Federal Funds rate. Build a
time series model for the mortgage rate using the lag-1 effective Federal
Funds rate as an explanatory variable. Perform model checking and write
down the fitted model. On the basis of the fitted model, does mortgage
rate depend on the Federal Funds rate at the 5% significance level?

(c) Let the forecasting period be from January 2007 to November 2011. Use
out-of-sample predictions to compare the two models.
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4

ASSET VOLATILITY AND
VOLATILITY MODELS

An important measure in finance is the risk associated with an asset and asset volatility
is perhaps the most commonly used risk measure. There are several types of asset
volatility, however. We define them in the next section. The goal of this chapter is
to understand the characteristics of asset volatility, to study volatility models, and to
gain experience in modeling and using asset volatility.

Volatility has many important applications in finance. It is a key factor in options
pricing and asset allocation. It plays an important role in value at risk calculation
for risk management. More recently, some volatility indices have become a financial
instrument. For example, the VIX index of the Chicago Board Options Exchange
(CBOE) started to trade in futures on March 26, 2004.

Although asset volatility is well defined, it is not directly observable in practice.
What we observe are the prices of an asset and its derivatives. One must estimate the
volatility from these observed prices. The fact that volatility is not directly observ-
able has several important implications in studying and modeling volatility. We shall
discuss these implications throughout the chapter.

There are many volatility models available in the literature. The univariate
models discussed in this chapter include the autoregressive conditional heteroscedas-
tic (ARCH) model of Engle (1982), the generalized autoregressive conditional

An Introduction to Analysis of Financial Data with R, First Edition. Ruey S. Tsay.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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heteroscedastic (GARCH) model of Bollerslev (1986), the exponential generalized
autoregressive conditional heteroscedastic (EGARCH) model of Nelson (1991),
the threshold generalized autoregressive conditional heteroscedastic (TGARCH)
model of Glosten et al. (1993) and Zakoian (1994), the nonsymmetric generalized
autoregressive conditional heteroscedastic (NGARCH) model of Engle and Ng (1993)
and Duan (1995), and the stochastic volatility (SV) models of Melino and Turnbull
(1990), Taylor (1994), Harvey et al. (1994), and Jacquier et al. (1994). We discuss
advantages and weaknesses of each volatility model and consider some applications
of volatility. The chapter also studies alternative approaches to volatility modeling,
including the use of daily high and low prices of an asset and realized volatility
based on high frequency data.

4.1 CHARACTERISTICS OF VOLATILITY

Although volatility is not directly observable, it has some characteristics that are
commonly seen in asset returns. First, there exist volatility clusters (i.e., volatility is
high for certain time periods and low for other periods). Second, volatility evolves over
time in a continuous manner–that is, volatility jumps are rare. Third, volatility does
not diverge to infinity–that is, volatility varies within some fixed range. Statistically
speaking, this means that volatility is often stationary. Fourth, volatility seems to react
differently to a big price increase and a big price drop with the latter having a greater
impact. This phenomenon is referred to as the leverage effect. These properties play
an important role in the development of volatility models. Some volatility models
were proposed specifically to correct the weaknesses of the existing ones for their
inability to capture the characteristics mentioned earlier. For example, the EGARCH
and TGARCH models were developed to capture the asymmetry in volatility induced
by big “positive” and “negative” asset returns.

In practice, we typically estimate the volatility of an asset using the prices of
its stock or derivatives or both. Consider the daily volatility of IBM stock. What we
observe are (i) the daily return for each trading day, (ii) tick-by-tick data for intraday
transactions and quotes, and (iii) the prices of options contingent on IBM stock. These
three data sources give rise to three types of volatility measures for IBM stock. They
are as follows:

• Volatility as the conditional standard deviation of daily returns: This is the usual
definition of volatility and is the focus of volatility models discussed in this
chapter.

• Implied volatility: Using prices from options markets, one can use a pricing
formula, for example, the Black–Scholes pricing formula, to deduce the volatil-
ity of the stock price. This volatility measure is called the implied volatility.
Because implied volatility is derived under certain assumptions that relate the
price of an option to that of the underlying stock, it is often criticized to be
model dependent. Experience shows that implied volatility of an asset return
tends to be larger than that obtained by using daily returns and a volatility
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model. This might be due to the risk premium for volatility in options markets
or to the way daily returns are calculated. The VIX of CBOE is an implied
volatility.

• Realized volatility: With the availability of high frequency financial data, one
can use intraday returns, for example, 5-min returns, to estimate the daily
volatility. This volatility measure is called realized volatility , which is a subject
of some intensive research in recent years. We shall discuss realized volatility
in Chapter 6.

In real applications, the time interval used to measure volatility is a year. Thus,
volatility is often annualized. If daily returns are used to estimate volatility, one can
obtain the annualized volatility by multiplying daily volatility by

√
252, for there are

typically 252 trading days in the United States.

4.2 STRUCTURE OF A MODEL

Let rt be the log return of an asset at time index t . The basic idea behind volatility
study is that the series {rt } is either serially uncorrelated or with minor lower order
serial correlations, but it is a dependent series. For illustration, consider the monthly
log stock returns of Intel Corporation from January 1973 to December 2009 for 444
observations. Figure 4.1 shows the time plot of the returns. From the plot, the return
series appears to be stationary and random. Figure 4.2a shows the sample ACF of the
log returns, which, as expected, suggests no significant serial correlations except for
some minor ones at lags 7 and 14. Indeed, the Ljung–Box statistics show that Q(12) =
18.68 with p value 0.10 for rt . On the other hand, Figure 4.2b shows the sample ACF
of the absolute log returns (i.e., |rt |). It is clear that |rt | has serial correlations. The
Ljung–Box statistics of |rt | show that Q(12) = 124.91 with p value close to zero.
Consequently, the monthly log returns of Intel stock are serially uncorrelated, but
dependent. This is the feature that a univariate volatility model is designed to capture.

To put the volatility models in proper perspective, it is informative to consider
the conditional mean and variance of rt given Ft−1; that is,

μt = E (rt |Ft−1), σ 2
t = Var(rt |Ft−1) = E [(rt − μt )

2|Ft−1], (4.1)

where Ft−1 denotes the information set available at time t − 1. Typically, Ft−1 consists
of all linear functions of the past returns. As shown by the empirical examples of
Chapter 2 and Figure 4.2, serial dependence in a stock return series rt is weak if it
exists at all. Therefore, the equation for μt in Equation (4.1) should be simple, and we
assume that rt follows a simple time series model such as a stationary ARMA(p, q)
model. For example, consider the monthly log returns of Intel stock. As shown before,
the Ljung–Box statistics show that the returns have no serial correlations and a simple
one-sample test confirms that the mean of rt is significantly different from zero. More
specifically, the t-ratio of testing H0 : μ = 0 versus Ha : μ �= 0 is 2.38 with p value
0.018. Thus, for the Intel log returns, we have rt = μt + at with μt = μ, a constant.
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Figure 4.1. Time plot of the monthly log returns of Intel stock from January 1973 to December

2009.
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Figure 4.2. Sample ACF of the monthly log returns of Intel stock from January 1973 to

December 2009: (a) ACF of the log returns and (b) ACF of the absolute log returns.
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In general, we assume that rt follows an ARMA(p, q) model so that rt = μt + at ,
where μt is given by

μt = φ0 +
p∑

i=1

φi rt−i −
q∑

j=1

θj at−j . (4.2)

If some explanatory variables are available, then we entertain the model rt = μt + at ,
where

μt = φ0 +
k∑

i=1

βi xi ,t−1 +
p∑

i=1

φi yt−i −
q∑

j=1

θj at−j , (4.3)

where yt−i = rt−i − φ0 − ∑k
i=1 βi xi ,t−i−1 denotes the adjusted return series after

removing the effect of explanatory variables, and xi ,t−j are explanatory variables
available at time t − j .

R Demonstration

> da=read.table("m-intcsp7309.txt",header=T)
> head(da)

date intc sp
1 19730131 0.010050 -0.017111
...
> intc=log(da$intc+1)
> rtn=ts(intc,frequency=12,start=c(1973,1))
> plot(rtn,type=’l’,xlab=’year’,ylab=’ln-rtn’) % time plot
> t.test(intc) % testing the mean of returns

One Sample t-test
data: intc
t = 2.3788, df = 443, p-value = 0.01779
alternative hypothesis: true mean is not equal to 0

> Box.test(intc,lag=12,type=’Ljung’)
Box-Ljung test

data: intc
X-squared = 18.6761, df = 12, p-value = 0.09665

> par(mfcol=c(2,1))
> acf(intc,lag=24) % ACF plots
> acf(abs(intc),lag=24)
> Box.test(abs(intc),lag=12,type=’Ljung’)

Box-Ljung test

data: abs(intc)
X-squared = 124.9064, df = 12, p-value < 2.2e-16
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Model (4.3) illustrates a possible application of the regression model with time
series errors of Chapter 2 in finance. The order (p, q) of an ARMA model may depend
on the frequency of the return series. For example, daily returns of a market index
often show some minor serial correlations, but monthly returns of the index may not
contain any significant serial correlation. The explanatory variables xi ,t−j in Equation
(4.3) are flexible. For example, a dummy variable can be used for the Mondays to
study the effect of weekend on daily stock returns. In the capital asset pricing model
(CAPM), the mean equation of rt can be written as rt = φ0 + βrm ,t + at , where rm ,t
denotes the market return.

Combining Equations (4.1) and (4.3), we have

σ 2
t = Var(rt |Ft−1) = Var(at |Ft−1), (4.4)

where the positive square root σt is the volatility. The conditional heteroscedastic
models of this chapter are concerned with the evolution of σ 2

t . The manner under
which σ 2

t evolves over time distinguishes one volatility model from another.
Conditional heteroscedastic models can be classified into two general categories.

Those in the first category use an exact function to govern the evolution of σ 2
t ,

whereas those in the second category use a stochastic equation to describe σ 2
t . The

GARCH model belongs to the first category, whereas the SV model is in the second
category.

Throughout the book, at is referred to as the shock or innovation of an asset return
at time t . The model for μt in Equation (4.3) is referred to as the mean equation for
rt and the model for σ 2

t is the volatility equation for rt . Therefore, modeling condi-
tional heteroscedasticity amounts to augmenting a dynamic equation, which governs
the time evolution of the conditional variance of the asset return to a time series
model.

4.3 MODEL BUILDING

Building a volatility model for an asset return series consists of four steps:

1. Specify a mean equation by testing for serial dependence in the data and,
if necessary, building an econometric model (e.g., an ARMA model) for the
return series to remove any linear dependence.

2. Use the residuals of the mean equation to test for ARCH effects.

3. Specify a volatility model if ARCH effects are statistically significant, and
perform a joint estimation of the mean and volatility equations.

4. Check the fitted model carefully and refine it if necessary.

In what follows, we describe each step of the modeling procedure in detail and intro-
duce various volatility models.
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Specifying the Mean Equation. For most asset return series, the serial cor-
relations are weak, if any. Thus, building a mean equation amounts to removing the
sample mean from the data if the sample mean is significantly different from zero.
For some daily return series, a simple AR model might be needed. In some cases, the
mean equation may employ some explanatory variables such as an indicator variable
for weekend or January effects. As discussed before, for the monthly log returns of
Intel stock, the mean equation consists a constant only.

4.4 TESTING FOR ARCH EFFECT

For ease in notation, let at = rt − μt be the residuals of the mean equation. The
squared series a2

t is then used to check for conditional heteroscedasticity, which is
also known as the ARCH effects. Two tests are available. The first test is to apply
the usual Ljung–Box statistics Q(m) to the {a2

t } series; see McLeod and Li (1983).
The null hypothesis of the test statistic is that the first m lags of ACF of the a2

t series
are zero. The second test for conditional heteroscedasticity is the Lagrange multiplier
test of Engle (1982). This test is equivalent to the usual F statistic for testing αi = 0
(i = 1, . . . , m) in the linear regression

a2
t = α0 + α1a2

t−1 + · · · + αma2
t−m + et , t = m + 1, . . . , T ,

where et denotes the error term, m is a prespecified positive integer, and T is the sam-
ple size. Specifically, the null hypothesis is H0 : α1 = · · · = αm = 0 and the alternative
hypothesis is Ha : αi �= 0 for some i between 1 and m . Let SSR0 = ∑T

t=m+1(a
2
t − ω)2,

where ω = (1/T )
∑T

t=1 a2
t is the sample mean of a2

t , and SSR1 = ∑T
t=m+1 ê2

t , where
êt is the least squares residual of the prior linear regression. Then we have

F = (SSR0 − SSR1)/m

SSR1/(T − 2m − 1)
,

which follows an F distribution with degrees of freedom m and T − 2m − 1 under
H0. When T is sufficiently large, one can use mF as the test statistic, which is
asymptotically a chi-squared distribution with m degrees of freedom under the null
hypothesis. The decision rule is to reject the null hypothesis if mF >χ2

m(α), where
χ2

m(α) is the upper 100(1 − α)th percentile of χ2
m , or the p value of mF is less than

α, type I error.
To demonstrate, we consider the monthly log stock returns of Intel Corporation

from 1973 to 2009. As the mean equation is simply a constant plus innovations, we
use yt = rt − r to test for the ARCH effect, where r is the sample mean of rt and
yt is an estimate of at . The Ljung–Box statistics of y2

t shows strong ARCH effects
with Q(12) = 92.94, the p value of which is close to zero. Applying the Lagrange
multiplier test of Engle with m = 12, we have F = 4.978 with p value 9.74 × 10−8.
Again, the test confirms strong ARCH effects in the monthly log returns of Intel stock.
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R Demonstration

> y=intc-mean(intc)
> Box.test(y^2,lag=12,type=’Ljung’)

Box-Ljung test

data: y^2
X-squared = 92.9389, df = 12, p-value = 1.332e-14

> source("archTest.R") % R script available on the book web site.
> archTest(y,12) % output edited.
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.005977 0.002249 2.658 0.008162 **
x1 0.093817 0.048147 1.949 0.052013 .
x2 0.153085 0.048102 3.183 0.001569 **
x3 0.146087 0.048614 3.005 0.002815 **
....

x12 0.161945 0.045965 3.523 0.000473 ***
---
Residual standard error: 0.03365 on 419 degrees of freedom
Multiple R-squared: 0.1248, Adjusted R-squared: 0.0997
F-statistic: 4.978 on 12 and 419 DF, p-value: 9.742e-08 <== F-ratio

The ARCH effect also occurs in other financial time series. Figure 4.3a shows the
time plot of the log returns for the daily exchange rate between US Dollar and Euro
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Figure 4.3. Daily log returns of the exchange rate between Dollar and Euro from January 4,

1999, to August 20, 2010: (a) time plot of the returns and (b) sample ACF of the returns.
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Figure 4.4. (a) Sample autocorrelations and (b) partial autocorrelations of the squared series

of daily log returns of the exchange rate between Dollar and Euro from January 4, 1999, to

August 20, 2010.

from January 4, 1999, to August 20, 2010. As expected, the variability of the exchange
rate was higher during the second half of 2008 and the first half of 2009. Figure 4.3b
gives the sample ACF of the series. These ACFs suggest that there are no strong serial
correlations in the log return series. The Ljung–Box statistics of the log returns give
Q(20) = 30.59 with p value 0.061. The null hypothesis of zero correlations is not
rejected at the 5% level, but is rejected at the 10% level. The t-ratio for testing zero
expected return is 0.20 with p value 0.84. Therefore, the mean equation for the daily
log returns of Dollar/Euro exchange rate is rt = at if one uses the 5% type I error.

Figure 4.4 shows the sample ACF and PACF of the r2
t series. Clearly, the squared

log return series has some serial correlations. Both plots confirm that there are serial
correlations in the squared series. Consequently, the sample ACF and PACF of r2

t
show that the daily log returns of the Dollar/Euro exchange rate have significant ARCH
effects. For further confirmation, the Ljung–Box statistics of r2

t show Q(20) = 661.45
with p value close to zero, and the Lagrange multiplier test gives an F -ratio of 14.74
with p value also close to zero. These tests confirm that there are strong ARCH effects
in the exchange rate series.

R Demonstration

> fx=read.table("d-useu9910.txt",header=T)
> fxeu=log(fx$rate)
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> eu=diff(fxeu)
> Box.test(eu,lag=20,type=’Ljung’)

Box-Ljung test
data: eu
X-squared = 30.585, df = 20, p-value = 0.06091

> t.test(eu)
One Sample t-test

data: eu
t = 0.2022, df = 2928, p-value = 0.8398
alternative hypothesis: true mean is not equal to 0

> Box.test(eu^2,lag=20,type=’Ljung’)
Box-Ljung test

data: eu^2
X-squared = 661.4545, df = 20, p-value < 2.2e-16

> source("archTest.R")
> archTest(eu,20)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.281e-05 2.535e-06 5.054 4.60e-07 ***
x1 -3.022e-02 1.858e-02 -1.626 0.103966
x2 9.441e-02 1.859e-02 5.080 4.02e-07 ***
....
x20 5.844e-02 1.859e-02 3.144 0.001683 **
---
Residual standard error: 8.483e-05 on 2888 degrees of freedom
Multiple R-squared: 0.09265, Adjusted R-squared: 0.08636
F-statistic: 14.74 on 20 and 2888 DF, p-value: < 2.2e-16

4.5 THE ARCH MODEL

The first model that provides a systematic framework for volatility modeling is the
ARCH model of Engle (1982). The basic idea of ARCH models is that (i) the shock
at of an asset return is serially uncorrelated, but dependent, and (ii) the dependence of
at can be described by a simple quadratic function of its lagged values. Specifically,
an ARCH(m) model assumes that

at = σtεt , σ 2
t = α0 + α1a2

t−1 + · · · + αma2
t−m , (4.5)

where {εt } is a sequence of independent and identically distributed (iid) random vari-
ables with mean zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0. The coefficients
αi must satisfy some regularity conditions to ensure that the unconditional variance
of at is finite. In practice, εt is often assumed to follow the standard normal or a
standardized Student t distribution or a generalized error distribution (GED). In some
applications, a skew distribution is used for εt .
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From the structure of the model, it is seen that large past squared shocks {a2
t−i }m

i=1
imply a large conditional variance σ 2

t for the innovation at . Consequently, at tends to
assume a large value (in modulus). This means that, under the ARCH framework, large
shocks tend to be followed by another large shock. Here, I use the word tend because
a large variance does not necessarily produce a large realization. It only says that the
probability of obtaining a large variate is greater than that of a smaller variance. This
feature is similar to the volatility clusterings observed in asset returns.

Remark. Some authors use ht to denote the conditional variance in Equation (4.5).
In this case, the shock becomes at = √

htεt . �

4.5.1 Properties of ARCH Models

To understand the ARCH models, it pays to carefully study the ARCH(1) model

at = σtεt , σ 2
t = α0 + α1a2

t−1,

where α0 > 0 and α1 ≥ 0. First, the unconditional mean of at remains zero because

E (at ) = E [E (at |Ft−1)] = E [σt E (εt )] = 0.

Second, the unconditional variance of at can be obtained as

Var(at ) = E (a2
t ) = E [E (a2

t |Ft−1)]

= E (α0 + α1a2
t−1) = α0 + α1E (a2

t−1).

Because at is a stationary process with E (at ) = 0, Var(at ) = Var(at−1) = E (a2
t−1).

Therefore, we have Var(at ) = α0 + α1Var(at ) and Var(at ) = α0/(1 − α1). Because the
variance of at must be positive, we require 0 ≤ α1 < 1. Third, in some applications,
we need higher order moments of at to exist and, hence, α1 must also satisfy some
additional constraints. For instance, to study its tail behavior, we require that the fourth
moment of at is finite. Under the normality assumption of εt in Equation (4.5), we
have

E (a4
t |Ft−1) = 3[E (a2

t |Ft−1)]
2 = 3(α0 + α1a2

t−1)
2.

Therefore,

E (a4
t ) = E [E (a4

t |Ft−1)] = 3E (α0 + α1a2
t−1)

2

= 3E
(
α2

0 + 2α0α1a2
t−1 + α2

1a4
t−1

)
.

If at is fourth-order stationary with m4 = E (a4
t ), then we have

m4 = 3[α2
0 + 2α0α1Var(at ) + α2

1m4]

= 3α2
0

(
1 + 2

α1

1 − α1

)
+ 3α2

1m4.
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Consequently,

m4 = 3α2
0(1 + α1)

(1 − α1)(1 − 3α2
1)

.

This result has two important implications: (i) as the fourth moment of at is positive,
we see that α1 must also satisfy the condition 1 − 3α2

1 > 0; that is, 0 ≤ α2
1 < 1

3 ; and
(ii) the unconditional kurtosis of at is

E (a4
t )

[Var(at )]2
= 3

α2
0(1 + α1)

(1 − α1)(1 − 3α2
1)

× (1 − α1)
2

α2
0

= 3
1 − α2

1

1 − 3α2
1

> 3.

Thus, the excess kurtosis of at is positive and the tail distribution of at is heavier
than that of a normal distribution. In other words, the shock at of a conditional
Gaussian ARCH(1) model is more likely than a Gaussian white noise series to produce
“outliers.” This is in agreement with the empirical finding that “outliers” appear more
often in asset returns than that implied by an iid sequence of normal random variates.

These properties continue to hold for general ARCH models, but the formulas
become more complicated for higher order ARCH models. The condition αi ≥ 0 in
Equation (4.5) can be relaxed. It is a condition to ensure that the conditional variance
σ 2

t is positive for all t . In fact, a natural way to achieve positiveness of the conditional
variance is to rewrite an ARCH(m) model as

at = σtεt , σ 2
t = α0 + A′

m ,t−1
Am ,t−1, (4.6)

where Am ,t−1 = (at−1, . . . , at−m)′ and 
 is an m × m nonnegative definite matrix.
The ARCH(m) model in Equation (4.5) requires 
 to be diagonal. Thus, Engle’s
model uses a parsimonious approach to approximate a quadratic function. For further
discussion, see Tsay (2010, Chapter 3).

4.5.2 Advantages and Weaknesses of ARCH Models

As discussed in the previous subsection, ARCH models have several advantages in
analyzing asset returns. The key advantages include the following:

1. The model can produce volatility clusters.

2. The shocks at of the model have heavy tails.

The models also have some weaknesses:

1. The model assumes that positive and negative shocks have the same effects on
volatility because it depends on the square of the previous shocks. In practice,
it is well known that price of a financial asset responds differently to positive
and negative shocks.
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2. The ARCH model is rather restrictive. For instance, α2
1 of an ARCH(1) model

must be in the interval [0, 1
3 ] if the series has a finite fourth moment. The

constraint becomes complicated for higher order ARCH models. In practice,
it limits the ability of ARCH models with Gaussian innovations to capture
excess kurtosis.

3. The ARCH model does not provide any new insight for understanding the
source of variations of a financial time series. It merely provides a mechanical
way to describe the behavior of the conditional variance. It gives no indication
about what causes such behavior to occur.

4. ARCH models are likely to overpredict the volatility because they respond
slowly to large isolated shocks to the return series.

4.5.3 Building an ARCH Model

Among volatility models, specifying an ARCH model is relatively easy. Details are
given below.

Order Determination. If an ARCH effect is found to be significant, one can
use the PACF of a2

t to determine the ARCH order. Using PACF of a2
t to select the

ARCH order can be justified as follows. From the model in Equation (4.5), we have

σ 2
t = α0 + α1a2

t−1 + · · · + αm a2
t−m .

For a given sample, a2
t is an unbiased estimate of σ 2

t . Therefore, we expect that a2
t

is linearly related to a2
t−1, . . . , a2

t−m in a manner similar to that of an autoregressive
model of order m . Note that a single a2

t is generally not an efficient estimate of
σ 2

t , but it can serve as an approximation that could be informative in specifying the
order m .

Alternatively, define ηt = a2
t − σ 2

t . It can be shown that {ηt } is an uncorrelated
series with mean 0. The ARCH model then becomes

a2
t = α0 + α1a2

t−1 + · · · + αm a2
t−m + ηt ,

which is in the form of an AR(m) model for a2
t , except that {ηt } is not an iid series.

From Chapter 2, PACF of a2
t is a useful tool to determine the order m . Because

{ηt } are not identically distributed, the least squares estimates of the prior model are
consistent, but not efficient. The PACF of a2

t may not be effective when the sample
size is small.

Consider the PACF of the squared log returns of Dollar/Euro exchange rate in
Figure 4.4b. There are significant PACFs at higher order lags, indicating that a high
order ARCH model is needed for the series. In this situation, one would employ
the more parsimonious GARCH model of the next section, instead of a pure ARCH
model.
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Estimation. Several likelihood functions are commonly used in ARCH estima-
tion, depending on the distributional assumption of εt . Under the normality assumption,
the likelihood function of an ARCH(m) model is

f (a1, . . . , aT |α) = f (aT |FT−1)f (aT−1|FT−2) · · · f (am+1|Fm)f (a1, . . . , am |α)

=
T∏

t=m+1

1√
2πσ 2

t

exp

(
− a2

t

2σ 2
t

)
× f (a1, . . . , am |α),

where α = (α0, α1, . . . , αm)′ and f (a1, . . . , am |α) is the joint probability density func-
tion of a1, . . . , am . As the exact form of f (a1, . . . , am |α) is complicated, it is commonly
dropped from the prior likelihood function, especially when the sample size is suffi-
ciently large. This results in using the conditional likelihood function

f (am+1, . . . , aT |α, a1, . . . , am) =
T∏

t=m+1

1√
2πσ 2

t

exp

(
− a2

t

2σ 2
t

)
,

where σ 2
t can be evaluated recursively. We refer to estimates obtained by maximizing

the prior likelihood function as the conditional maximum likelihood estimates (MLEs)
under normality.

Maximizing the conditional likelihood function is equivalent to maximizing its
logarithm, which is easier to handle. The conditional log likelihood function is

�(am+1, . . . , aT |α, a1, . . . , am) =
T∑

t=m+1

[
−1

2
ln(2π) − 1

2
ln(σ 2

t ) − 1

2

a2
t

σ 2
t

]
.

As the first term ln(2π) does not involve any parameters, the log likelihood function
becomes

�(am+1, . . . , aT |α, a1, . . . , am) = −
T∑

t=m+1

[
1

2
ln(σ 2

t ) + 1

2

a2
t

σ 2
t

]
,

where σ 2
t = α0 + α1a2

t−1 + · · · + αm a2
t−m can be evaluated recursively.

In some applications, it is more appropriate to assume that εt follows a heavy-
tailed distribution such as a standardized Student t distribution. Let xv be a Student t
distribution with v degrees of freedom. Then Var(xv) = v/(v − 2) for v > 2, and we
use εt = xv/

√
v/(v − 2). The probability density function of εt is

f (εt |v) = 
((v + 1)/2)


(v/2)
√

(v − 2)π

(
1 + ε2

t

v − 2

)−(v+1)/2

, v > 2, (4.7)

where 
(x) is the usual gamma function (i.e., 
(x) = ∫ ∞
0 yx−1e−ydy). Using at =

σtεt , we obtain the conditional likelihood function of at as
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f (am+1, . . . , aT |α, Am) =
T∏

t=m+1


((v + 1)/2)


(v/2)
√

(v − 2)π

1

σt

(
1 + a2

t

(v − 2)σ 2
t

)−(v+1)/2

,

where v > 2 and Am = (a1, a2, . . . , am). We refer to the estimates that maximize the
prior likelihood function as the conditional MLEs under t distribution. The degrees of
freedom of the t distribution can be specified a priori or estimated jointly with other
parameters. A value between 3 and 6 is often used if it is prespecified.

If the degrees of freedom v of the Student t distribution is prespecified, then the
conditional log likelihood function is

�(am+1, . . . , aT |α, Am) = −
T∑

t=m+1

[
v + 1

2
ln

(
1 + a2

t

(v − 2)σ 2
t

)
+ 1

2
ln(σ 2

t )

]
. (4.8)

If one wishes to estimate v jointly with other parameters, then the log likelihood
function becomes

�(am+1, . . . , aT |α, v, Am)

= (T − m)[ln(
((v + 1)/2)) − ln(
(v/2)) − 0.5 ln((v − 2)π)]

+ �(am+1, . . . , aT |α, Am),

where the second term is given in Equation (4.8).
Besides fat tails, empirical distributions of asset returns may also be skew. To

handle this additional characteristic of asset returns, the Student t distribution has
been modified to become a skew Student t distribution. There are multiple versions of
skew Student t distribution, but we shall adopt the approach of Fernández and Steel
(1998), which can introduce skewness into any continuous unimodal and symmetric
(with respect to 0) univariate distribution. Specifically, for the innovation εt of an
ARCH process, Lambert and Laurent (2001) apply the Fernández and Steel’s method
to the standardized Student t distribution in Equation (4.7) to obtain a standardized
skew Student t distribution. The resulting probability density function is

g(εt |ξ , v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

ξ + 1
ξ

�f [ξ(�εt + �)|v] if εt < −�/�

2

ξ + 1
ξ

�f [(�εt + �)/ξ |v] if εt ≥ −�/�,
(4.9)

where f (·) is the pdf of the standardized Student t distribution in Equation (4.7), ξ is
the skewness parameter, v > 2 is the degrees of freedom, and the parameters � and
� are given below

� = 
((v − 1)/2)
√

v − 2√
π
(v/2)

(ξ − 1

ξ
), �2 = (ξ 2 + 1

ξ 2
− 1) − � 2.
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In Equation (4.9), ξ 2 is equal to the ratio of probability masses above and below the
mode of the distribution and, hence, it is a measure of the skewness.

To illustrate, Figure 4.5 shows some density functions of Student t and skew
Student t distributions. For the Student t distribution, the densities shown are those
of degrees of freedom 5, 10, and 30, respectively. The solid line denotes 5 degrees of
freedom. As expected, as the degrees of freedom increase the tails become shorter and
the peak becomes lower. For the skew Student t distribution, the densities shown all
have 5 degrees of freedom, but their skew parameters are 0.75, 1, and 1.5, respectively.
We see that these parameters produce left-skew, symmetric, and right-skew density,
respectively.

Finally, εt may assume a GED with probability density function

f (x) = v exp(− 1
2 |x/λ|v)

λ2(1+1/v)
(1/v)
, −∞ < x < ∞, 0 < v ≤ ∞, (4.10)

where 
(·) is the gamma function and

λ = [2(−2/v)
(1/v)/
(3/v)]1/2.

This distribution reduces to a Gaussian distribution if v = 2 and it has heavy tails
when v < 2. The conditional log likelihood function �(am+1, . . . , aT |α, Am) can be
easily obtained.

Figure 4.6 shows some density functions for GED and skew GED random
variables. They are zero mean and unit standard deviation. For GED, the shape
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Figure 4.5. Density functions for (a) Student t and (b) skew Student t distributions. For

Student t, the degrees of freedom are 5 (solid), 10 (dashed), and 30 (dot-dashed), respectively.

For skew Student t, the degrees of freedom are 5, but the skew parameters are 0.75 (dashed),

1.0 (solid), and 1.5 (dot-dashed), respectively.
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Figure 4.6. Density functions for (a) generalized error distributions (GED) and (b) skew GED.

For GED, the shape parameters are 2 (solid), 1.2 (dashed), and 2.8, respectively. For skew GED,

the shape parameter is 1.5, but the skew parameters are 1 (solid), 0.75 (dashed), and 1.5,

respectively.

parameter used are 2, 1.2, and 2.8, respectively, so that they represent normal,
heavier, and shorter tails. For skew GED, the shape parameter is 1.5 so that they all
have heavy tails. The skew parameters are 1, 0.75, and 1.5, respectively, so that the
densities are symmetric, left skew, and right skew, respectively.

Model Checking. For a properly specified ARCH model, the standardized
residuals

ãt = at

σt

form a sequence of iid random variables. Therefore, one can check the adequacy
of a fitted ARCH model by examining the series {ãt }. In particular, the Ljung–Box
statistics of ãt can be used to check the adequacy of the mean equation and that of
ã2

t can be used to test the validity of the volatility equation. The skewness, kurtosis,
and quantile-to-quantile plot (i.e., QQ plot) of {ãt } can be used to check the validity
of the distribution assumption. The fGarch package provides many plots for a fitted
volatility model.

Forecasting. Forecasts of the ARCH model in Equation (4.5) can be obtained
recursively as those of an AR model. Consider an ARCH(m) model. At the forecast
origin h , the 1-step ahead forecast of σ 2

h+1 is

σ 2
h (1) = α0 + α1a2

h + · · · + αm a2
h+1−m .
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The 2-step ahead forecast is

σ 2
h (2) = α0 + α1σ

2
h (1) + α2a2

h + · · · + αm a2
h+2−m ,

and the �-step ahead forecast for σ 2
h+� is

σ 2
h (�) = α0 +

m∑
i=1

αi σ
2
h (� − i ), (4.11)

where σ 2
h (� − i ) = a2

h+�−i if � − i ≤ 0.

4.5.4 Some Examples

In this subsection, we illustrate ARCH modeling by considering two examples.

Example 4.1. We continue to demonstrate the volatility modeling by using the
monthly log returns of Intel stock from 1973 to 2009. The ARCH tests of Section
4.4 showed that the log return series has significant ARCH effects. Figure 4.7 shows
the sample ACF and PACF of the squared series of mean-adjusted returns. From the
PACF plot, we see significant correlations at lags 1, 2, 3, and 11. To keep the model
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Figure 4.7. Sample ACF and PACF of the squared series of mean-adjusted monthly log returns

of Intel stock from January 1973 to December 2009: (a) ACF and (b) PACF
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simple, we entertain an ARCH(3) model for the volatility. Consequently, we specify
the model

rt = μ + at , at = σtεt , σ 2
t = α0 + α1a2

t−1 + α2a2
t−2 + α3a2

t−3

for the monthly log returns of Intel stock. Assuming that εt are iid standard normal,
we obtain the fitted model

rt = 0.0126 + at , σ 2
t = 0.0104 + 0.2329a2

t−1 + 0.0751a2
t−2 + 0.0520a2

t−3,

where the standard errors of the parameters are 0.0055, 0.0012, 0.1115, 0.0473, and
0.0451, respectively; see the R output below. While the estimates meet the general
requirement of an ARCH(3) model, the estimates of α2 and α3 appear to be statistically
insignificant at the 5% level. Therefore, the model can be simplified. The R command
for estimating GARCH model is garchFit of the fGarch package. �

R Demonstration. Output edited and % marks explanation.

> library(fGarch) % Load package
> da=read.table("m-intcsp7309.txt",header=T)
> head(da)

date intc sp
1 19730131 0.010050 -0.017111
....

6 19730629 0.133333 -0.006575
> intc=log(da$intc+1)
> m1=garchFit(~1+garch(3,0),data=intc,trace=F) % Fit an ARCH(3) model

% Use subcommand "trace = F" to reduce the output.
> summary(m1)
Title: GARCH Modelling

Mean and Variance Equation: data ∼ 1+garch(3,0) [data=intc]
Conditional Distribution: norm

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 0.012567 0.005515 2.279 0.0227 *
omega 0.010421 0.001238 8.418 <2e-16 ***
alpha1 0.232889 0.111541 2.088 0.0368 *
alpha2 0.075069 0.047305 1.587 0.1125
alpha3 0.051994 0.045139 1.152 0.2494
---
> m2=garchFit(~1+garch(1,0),data=intc,trace=F)
> summary(m2)
Title: GARCH Modelling
Call: garchFit(formula=~1+garch(1,0),data=intc,trace=F)

Mean and Variance Equation: data ∼ 1+garch(1,0) [data=intc]
Conditional Distribution: norm

Coefficient(s):
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Estimate Std. Error t value Pr(>|t|)
mu 0.013130 0.005318 2.469 0.01355 *
omega 0.011046 0.001196 9.238 < 2e-16 ***
alpha1 0.374976 0.112620 3.330 0.00087 ***
---
Log Likelihood: 299.9247 normalized: 0.675506

Standardized Residuals Tests:
Statistic p-Value

Jarque-Bera Test R Chi^2 144.3783 0
Shapiro-Wilk Test R W 0.9678164 2.669091e-08
Ljung-Box Test R Q(10) 12.12248 0.2769429
Ljung-Box Test R Q(20) 24.33412 0.2281016
Ljung-Box Test R^2 Q(10) 16.57807 0.08423723
Ljung-Box Test R^2 Q(20) 38.81395 0.007031558
LM Arch Test R TR^2 27.32897 0.006926822

Information Criterion Statistics:
AIC BIC SIC HQIC

-1.337499 -1.309824 -1.337589 -1.326585
%% further model checking

> resi=residuals(m2,standardize=T)
> tdx=c(1:444)/12+1973
> par(mfcol=c(3,10)
> plot(tdx,resi,xlab=’year’,ylab=’stand-resi’,type=’l’)
> acf(resi,lag=20)
> pacf(resi^2,lag=20)
% Use fGarch built-in plots

> plot(m2)
Make a plot selection (or 0 to exit):
1: Time Series
2: Conditional SD
3: Series with 2 Conditional SD Superimposed
4: ACF of Observations
5: ACF of Squared Observations
6: Cross Correlation
7: Residuals
8: Conditional SDs
9: Standardized Residuals

10: ACF of Standardized Residuals
11: ACF of Squared Standardized Residuals
12: Cross Correlation between r^2 and r
13: QQ-Plot of Standardized Residuals

Selection: 0

Dropping the two insignificant parameters, we obtain the model

rt = 0.0131 + at , σ 2
t = 0.0110 + 0.3750a2

t−1, (4.12)

where the standard errors of the parameters are 0.0053, 0.0012, and 0.1126, respec-
tively. All the estimates are statistically significant. Figure 4.8 shows the standard-
ized residuals {ãt }, the sample ACF of {ãt }, and the sample PACF of {ã2

t }. The
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Figure 4.8. Model checking statistics of the Gaussian ARCH(1) model in Equation (4.12) for

the monthly log returns of Intel stock from January 1973 to December 2009: (a) time plot of

the standardized residuals, (b) sample ACF of the standardized residuals, and (c) sample PACF

of the squared series of standardized residuals.

ACF plot indicates that the standardized residuals have no serial correlations, but
the PACF plot suggests that certain serial dependence at higher lags remains in
the squared standardized residuals. Indeed, the Ljung–Box statistics of standardized
residuals give Q(10) = 12.12 with p value 0.28 and Q(20) = 24.33 with p value
0.23. On the other hand, the Q-statistics of {ã2

t } give Q(10) = 16.58 with p value
0.08 and Q(20) = 38.81 with p value 0.007. Consequently, the ARCH(1) model in
Equation (4.12) is adequate for describing the conditional heteroscedasticity of the
data at the 5% significance level if one focuses only on the lower order models.

The ARCH(1) model in Equation (4.12) has some interesting properties. First,
the expected monthly log return for Intel stock is about 1.31%, which is remarkable,
especially because the data span includes the period after the Internet bubble and
the recent financial crisis. Second, α̂2

1 = 0.3752 < 1
3 so that the unconditional fourth

moment of the monthly log returns of Intel stock exists. Third, the unconditional stan-
dard deviation of rt is

√
0.0110/(1 − 0.375) ≈ 0.1327, which is close to the sample
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standard error 0.1269 of the monthly log returns. Finally, the ARCH(1) model can be
used to predict the monthly volatility of Intel stock returns.

t Innovation. For comparison, we also fit an ARCH(1) model with Student t
innovations to the series. The resulting model is

rt = 0.0172 + at , σ 2
t = 0.0118 + 0.2775a2

t−1, (4.13)

where the standard errors of the parameters are 0.0052, 0.0016, and 0.1072, respec-
tively. The estimated degrees of freedom is 5.97 with standard error 1.53. All esti-
mates are significant at the 5% level. The unconditional standard deviation of at is√

0.0118/(1 − 0.27755) ≈ 0.1278, which is close to that obtained under normality.
The Ljung–Box statistics of the standardized residuals give Q(10) = 12.86 with p
value 0.23, confirming that the mean equation is adequate. However, The Ljung–Box
statistics for the squared standardized residuals show Q(10) = 19.96 with p value
0.0296. The volatility equation is inadequate at the 5% level.

Comparing models (4.12) and (4.13), we see that (i) using a heavy-tailed distri-
bution for εt reduces the ARCH coefficient, and (ii) the difference between the two
models is small for this particular instance. Finally, a more appropriate conditional
heteroscedastic model for the monthly log returns of Intel stock is a GARCH(1,1)
model, which is discussed in the next section.

R Demonstration. With Student-t innovations.

> m3=garchFit(~1+garch(1,0),data=intc,trace=F,cond.dist="std")
> summary(m3)
Title: GARCH Modelling
Call:garchFit(formula=~1+garch(1,0),data=intc,cond.dist="std",trace=F)

Mean and Variance Equation: data ∼ 1 + garch(1, 0) [data = intc]
Conditional Distribution: std

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 0.017202 0.005195 3.311 0.000929 ***
omega 0.011816 0.001560 7.574 3.62e-14 ***
alpha1 0.277476 0.107183 2.589 0.009631 **
shape 5.970266 1.529524 3.903 9.49e-05 ***
---
Standardized Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 157.7799 0
Shapiro-Wilk Test R W 0.9663975 1.488202e-08
Ljung-Box Test R Q(10) 12.85940 0.2316396
Ljung-Box Test R Q(20) 25.374 0.1874956
Ljung-Box Test R^2 Q(10) 19.96092 0.02962445
Ljung-Box Test R^2 Q(20) 44.06739 0.001473970
LM Arch Test R TR^2 29.76071 0.003033508
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Remark. In fGarch package, the command garchFit allows for several conditional
distributions, including Student t and skew Student t distributions. They are specified
by cond.dist = “std” or “sstd”, respectively. �

Example 4.2. Consider the log returns of daily exchange rate between US Dollar and
Euro from January 4, 1999, to August 20, 2010. As shown in Section 4.4, the mean
equation of the log returns is rt = at and there exist strong ARCH effects in the data.
Thus, the series is a good example for pure conditional heteroscedastic models. If
ARCH models are entertained, the sample PACF of r2

t shown in Figure 4.4b suggests
an ARCH(11) model. Using the conditional Gaussian likelihood function, we obtain
the fitted model rt = 0.00013 + σtεt and

σ 2
t = 1.89 × 10−5 + 0.017a2

t−1 + 0.045a2
t−2 + 0.027a2

t−3 + · · · + 0.039a2
t−11.

Details of the estimates and their standard errors are given in the R output below.
Several coefficient estimates are not significant at the 5% level. Also given are some
model checking statistics, including Ljung–Box statistics for standardized residuals
and their squared series. On the basis of the diagnostic statistics, we see that, except
for the normality assumption, the fitted model is adequate in modeling the daily
log returns of the Dollar/Euro exchange rate. A simpler model for the series can be
obtained if one entertains the GARCH models. �

R Demonstration

> mm1=garchFit(~1+garch(11,0),data=eu,trace=F)
> summary(mm1)
Title: GARCH Modelling
Call: garchFit(formula=~1+garch(11,0),data=eu,trace=F)

Mean and Variance Equation: data ∼ 1+garch(11,0) [data = eu]
Conditional Distribution: norm

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 1.265e-04 1.110e-04 1.140 0.254426
omega 1.890e-05 1.727e-06 10.944 < 2e-16 ***
alpha1 1.661e-02 1.575e-02 1.055 0.291568
alpha2 4.456e-02 2.085e-02 2.137 0.032592 *
alpha3 2.721e-02 1.700e-02 1.601 0.109353
alpha4 8.037e-02 2.363e-02 3.402 0.000669 ***
alpha5 5.011e-02 2.127e-02 2.355 0.018500 *
alpha6 9.219e-02 2.274e-02 4.053 5.05e-05 ***
alpha7 7.528e-02 2.406e-02 3.129 0.001755 **
alpha8 6.954e-02 2.455e-02 2.832 0.004622 **
alpha9 3.347e-02 2.022e-02 1.656 0.097822 .
alpha10 2.782e-02 1.820e-02 1.528 0.126412
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alpha11 3.877e-02 1.906e-02 2.035 0.041896 *
---
Standardised Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 360.802 0
Shapiro-Wilk Test R W 0.9891754 3.90746e-14
Ljung-Box Test R Q(10) 15.77626 0.1062187
Ljung-Box Test R Q(20) 24.77444 0.2101971
Ljung-Box Test R^2 Q(10) 4.801266 0.904052
Ljung-Box Test R^2 Q(20) 27.56081 0.1202105
LM Arch Test R TR^2 11.96818 0.4482389

4.6 THE GARCH MODEL

Although the ARCH model is simple, it often requires many parameters to adequately
describe the volatility process of an asset return. For instance, consider the daily log
returns of the Dollar/Euro exchange rate of Example 4.2. An ARCH(11) is needed for
the series. To keep the model simple, some alternative model must be sought. Boller-
slev (1986) proposes a useful extension known as the generalized ARCH (GARCH)
model . For a log return series rt , let at = rt − μt be the innovation at time t . Then,
at follows a GARCH(m , s) model if

at = σtεt , σ 2
t = α0 +

m∑
i=1

αi a
2
t−i +

s∑
j=1

βj σ
2
t−j , (4.14)

where again {εt } is a sequence of iid random variables with mean 0 and variance
1.0, α0 > 0, αi ≥ 0, βj ≥ 0, and

∑max(m ,s)
i=1 (αi + βi ) < 1. Here, it is understood that

αi = 0 for i > m and βj = 0 for j > s . The latter constraint on αi + βi implies that
the unconditional variance of at is finite, whereas its conditional variance σ 2

t evolves
over time. As before, εt is often assumed to follow a standard normal or standardized
Student t distribution or GED. Equation (4.14) reduces to a pure ARCH(m) model if
s = 0. The αi and βj are referred to as ARCH and GARCH parameters, respectively.

To understand properties of GARCH models, it is informative to use the following
representation. Let ηt = a2

t − σ 2
t so that σ 2

t = a2
t − ηt . By plugging σ 2

t−i = a2
t−i −

ηt−i (i = 0, · · · , s) into Equation (4.14), we can rewrite the GARCH model as

a2
t = α0 +

max(m ,s)∑
i=1

(αi + βi )a
2
t−i + ηt −

s∑
j=1

βj ηt−j . (4.15)

It is easy to check that {ηt } is a martingale difference series (i.e., E (ηt ) = 0 and
cov(ηt , ηt−j ) = 0 for j ≥ 1). However, {ηt } in general is not an iid sequence.
Equation (4.15) is an ARMA form for the squared series a2

t . Thus, a GARCH model
can be regarded as an application of the ARMA idea to the squared series a2

t . Using
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the unconditional mean of an ARMA model, we have

E (a2
t ) = α0

1 − ∑max(m ,s)
i=1 (αi + βi )

,

provided the denominator of the prior fraction is positive.
The strengths and weaknesses of GARCH models can be easily seen by focusing

on the simplest GARCH(1,1) model with

σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1, 0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1. (4.16)

First, a large a2
t−1 or σ 2

t−1 gives rise to a large σ 2
t . This means that a large a2

t−1 tends
to be followed by another large a2

t , generating, again, the well-known behavior of
volatility clustering in financial time series. Second, it can be shown that if 1 − 2α2

1 −
(α1 + β1)

2 > 0, then

E (a4
t )

[E (a2
t )]2

= 3[1 − (α1 + β1)
2]

1 − (α1 + β1)
2 − 2α2

1

> 3.

Consequently, similar to ARCH models, the tail distribution of a GARCH(1,1) process
is heavier than that of a normal distribution. Third, the model provides a simple
parametric function that can be used to describe the volatility evolution.

Forecasts of a GARCH model can be obtained using methods similar to those of
an ARMA model. Consider the GARCH(1,1) model in Equation (4.16) and assume
that the forecast origin is h . For 1-step ahead forecast, we have

σ 2
h+1 = α0 + α1a2

h + β1σ
2
h ,

where ah and σ 2
h are known at the time index h . Therefore, the 1-step ahead forecast

is

σ 2
h (1) = α0 + α1a2

h + β1σ
2
h .

For multistep ahead forecasts, we use a2
t = σ 2

t ε2
t and rewrite the volatility equation

in Equation (4.16) as

σ 2
t+1 = α0 + (α1 + β1)σ

2
t + α1σ

2
t (ε2

t − 1).

When t = h + 1, the equation becomes

σ 2
h+2 = α0 + (α1 + β1)σ

2
h+1 + α1σ

2
h+1(ε

2
h+1 − 1).

As E (ε2
h+1 − 1|Fh) = 0, the 2-step ahead volatility forecast at the forecast origin h

satisfies the equation

σ 2
h (2) = α0 + (α1 + β1)σ

2
h (1).
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In general, we have

σ 2
h (�) = α0 + (α1 + β1)σ

2
h (� − 1), �> 1. (4.17)

This result is exactly the same as that of an ARMA(1,1) model with AR polynomial
1 − (α1 + β1)B . By repeated substitutions in Equation (4.17), we obtain that the �-step
ahead forecast can be written as

σ 2
h (�) = α0[1 − (α1 + β1)

�−1]

1 − α1 − β1
+ (α1 + β1)

�−1σ 2
h (1).

Therefore,

σ 2
h (�) → α0

1 − α1 − β1
, as � → ∞

provided that α1 + β1 < 1. Consequently, the multistep ahead volatility forecasts of
a GARCH(1,1) model converge to the unconditional variance of at as the forecast
horizon increases to infinity provided that Var(at ) exists.

The literature on GARCH models is enormous; see Bollerslev et al. (1992, 1994),
and references therein. The model encounters the same weaknesses as the ARCH
model. For instance, it responds equally to positive and negative shocks. In addition,
recent empirical studies of high frequency financial time series indicate that the tail
behavior of GARCH models remains too short even with standardized Student t inno-
vations. For further information about kurtosis of GARCH models, see Tsay (2010,
Chapter 3).

4.6.1 An Illustrative Example

The modeling procedure of ARCH models can also be used to build a GARCH
model. However, there is little study about specifying the order of an GARCH model
for a financial time series. Only lower order GARCH models are used in most applica-
tions, say GARCH(1,1), GARCH(2,1), and GARCH(1,2) models. In many situations, a
GARCH(1,1) model appears to be adequate. For estimation, the conditional maximum
likelihood method continues to apply provided that the starting values of the volatility
{σ 2

t } are assumed to be known. Consider, for instance, a GARCH(1,1) model. If σ 2
1

is treated as fixed, then σ 2
t can be computed recursively for a GARCH(1,1) model.

In some applications, the sample variance of at serves as a good starting value of σ 2
1 .

The fitted model can be checked by using the standardized residual ãt = at/σt and
its squared process.

In this section, we focus on the monthly log returns of Intel stock from January
1973 to December 2009 with 444 observations; see Figure 4.1. Our goals are (i)
to demonstrate empirical analysis of GARCH processes, (ii) to compare different
GARCH models, and (iii) to show the prediction of a GARCH model.
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Example 4.3. Model checking for the ARCH(1) model with Gaussian innovations
of Example 4.1 shows that the model needs some refinement, for example, the
Ljung–Box statistics of the squared standardized residuals give Q(20) = 38.81 with
p value 0.007. Here, we entertain a GARCH(1,1) model for the monthly log returns
of Intel stock. We employ different innovations to provide a better understanding of
the return series. Again, let rt be the monthly log return and, for simplicity, standard
errors of the estimates are given in the R output.

Using Gaussian innovations, we obtain the model

rt = 0.0113 + at , at = σtεt , ε ∼ N (0, 1)

σ 2
t = 0.00092 + 0.086a2

t−1 + 0.853σ 2
t−1, (4.18)

where all estimates are significant at the 5% level. Except for the normality tests,
model checking statistics indicate that this Gaussian GARCH(1,1) model is adequate
for rt . AIC for the model is −1.3889. Let ãt = ât/σt be the standardized residuals
of the model. Figure 4.9b shows the time plot of ãt . Except for one or two possible
outliers, the standardized residuals look reasonable. Figure 4.10 shows the ACF and
PACF of {ãt } and {ã2

t }. Except for a marginal correlation at lag 12 of ã2
t , these ACF

and PACF confirm that the fitted model is adequate in describing the conditional mean
and variance of the log return series. Figure 4.9a gives the fitted volatility series of
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Figure 4.9. Time plots for a fitted GARCH(1,1) model with Gaussian innovations to the

monthly log returns of Intel stock from January 1973 to December 2009: (a) volatility series

and (b) standardized residuals.
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Figure 4.10. Sample ACF and PACF of the standardized residuals and their squared series of

a Gaussian GARCH(1,1) model fitted to the monthly log returns of Intel stock from January

1973 to December 2009.

the model. As expected, the volatility was high during the oil crisis of 1973–1974
and the internet bubble around 2000. Finally, Figure 4.11 shows the time plot of the
log returns with 95% pointwise predictive intervals. The intervals are calculated by
μ̂ ± σ̂t , where μ̂ = 0.0113 is the constant term of the mean equation. With some
extreme exceptions, all returns are within the 95% predictive intervals. The implied
unconditional variance for rt is 0.000919/(1 − 0.0864 − 9.8526) = 0.0151, which is
slightly smaller than the sample variance 0.0161 of the data.

Using Student t innovations, we obtain the model

rt = 0.0165 + at , at = σtεt , εt ∼ t∗
6.77

σ 2
t = 0.00116 + 0.1059a2

t−1 + 0.8171σ 2
t−1, (4.19)

where, again, all estimates are significantly different from zero at the 5% level, and
t∗
d denotes a standardized Student t distribution with d degrees of freedom. Model

checking statistics show that this fitted model is adequate for the log return series.
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Figure 4.11. Time plot of the monthly log returns of Intel stock January 1973 to December

2009. The two dashed lines indicate pointwise 95% predictive intervals based on the Gaussian

GARCH(1,1) model of Equation (4.18).

The AIC of the model in Equation (4.19) is −1.4470, and the implied unconditional
variance of rt is 0.0011576/(1 − 0.0159 − 0.8171) = 0.01503.

The sample skewness of the log returns is −0.5526, which has a t-ratio of −4.75
so that the monthly log returns of Intel stock are negatively skew. To model this
skewness, we employ a skew Student t distribution for the innovations εt . The resulting
model is

rt = 0.0133 + at , at = σtεt , εt ∼ t∗
0.87,7.23

σ 2
t = 0.00116 + 0.1049a2

t−1 + 0.8178σ 2
t−1, (4.20)

where t∗
ξ ,d denotes a standardized skew Student t distribution with skew parame-

ter ξ and degrees of freedom d , and all estimates are significant at the 5% level.
Model checking statistics also fail to indicate any inadequacy of the fitted model in
Equation (4.20). AIC of the model is −1.4509. Note that the estimate of the skew
parameter is 0.8717 with standard error 0.0629. The hypothesis of interest here is
H0 : ξ = 1 versus the alternative Ha : ξ �= 1. In this particular case, the t-ratio is
t = (0.8717 − 1)/0.0629 = −2.04 with a two-sided p value 0.041. Consequently, the
null hypothesis of no skewness is rejected at the 5% level. Figure 4.12 shows the
QQ plot of the standardized residuals of model (4.20) with skew Student t distri-
bution with 7.23 degrees of freedom and skew parameter 0.8717. The plot looks
reasonable.



THE GARCH MODEL 205

−4 −2 0 2

−6
−4

−2
0

2
4

qsstd – QQ Plot

Theoretical quantiles

Sa
m

pl
e 

qu
an

til
es

Figure 4.12. Quantile-to-quantile plot for the standardized residuals of the GARCH(1,1)

model in Equation (4.20).

R Demonstration. Output edited.

> library(fGarch)
> m4=garchFit(~1+garch(1,1),data=intc,trace=F)
> summary(m4)
Title: GARCH Modelling
Call: garchFit(formula=~1+garch(1,1),data=intc,trace=F)

Mean and Variance Equation: data ∼ 1 + garch(1, 1) [data = intc]
Conditional Distribution: norm

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 0.0112657 0.0053931 2.089 0.03672 *
omega 0.0009190 0.0003888 2.364 0.01808 *
alpha1 0.0864383 0.0265439 3.256 0.00113 **
beta1 0.8525855 0.0394322 21.622 < 2e-16 ***
---
Standardised Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 174.904 0
Shapiro-Wilk Test R W 0.9709618 1.030377e-07
Ljung-Box Test R Q(10) 8.016844 0.6271916
Ljung-Box Test R Q(20) 16.41549 0.6905368
Ljung-Box Test R^2 Q(10) 0.8746345 0.9999072
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Ljung-Box Test R^2 Q(20) 12.55994 0.8954573
LM Arch Test R TR^2 10.51401 0.5709617

Information Criterion Statistics:
AIC BIC SIC HQIC

-1.388877 -1.351978 -1.389037 -1.374326

> v1=volatility(m4) % Obtain volatility
> resi=residuals(m4,standardize=T) % Standardized residuals
> vol=ts(v1,frequency=12,start=c(1973,1))
> res=ts(resi,frequency=12,start=c(1973,1))
> par(mfcol=c(2,1)) % Show volatility and residuals
> plot(vol,xlab=’year’,ylab=’volatility’,type=’l’)
> plot(res,xlab=’year’,ylab=’st. resi’,type=’l’)
> par(mfcol=c(2,2)) % Obtain ACF & PACF
> acf(resi,lag=24)
> pacf(resi,lag=24)
> acf(resi^2,lag=24)
> pacf(resi^2,lag=24)
> % Obtain plot of predictive intervals
> par(mfcol=c(1,1))
> upp=0.0113+2*v1
> low=0.0113-2*v1
> tdx=c(1:444)/12+1973
> plot(tdx,intc,xlab=’year’,ylab=’series’,type=’l’,ylim=c(-0.6,0.6))
> lines(tdx,upp,lty=2,col=’red’)
> lines(tdx,low,lty=2,col=’red’)
> abline(h=c(0.0113))
% Student-t innovations
> m5=garchFit(~1+garch(1,1),data=intc,trace=F,cond.dist="std")
> summary(m5)
Title: GARCH Modelling
Call: garchFit(formula=~1+garch(1,1),data=intc,cond.dist="std",trace=F)

Mean and Variance Equation: data ∼ 1+garch(1,1) [data = intc]
Conditional Distribution: std

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 0.0165075 0.0051031 3.235 0.001217 **
omega 0.0011576 0.0005782 2.002 0.045286 *
alpha1 0.1059030 0.0372047 2.846 0.004420 **
beta1 0.8171313 0.0580141 14.085 < 2e-16 ***
shape 6.7723503 1.8572380 3.646 0.000266 ***
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 7.877778 0.6407741
Ljung-Box Test R Q(20) 16.50475 0.6848581
Ljung-Box Test R^2 Q(10) 1.066054 0.9997694
Ljung-Box Test R^2 Q(20) 12.61496 0.8932865
LM Arch Test R TR^2 10.80739 0.5454935

Information Criterion Statistics:
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AIC BIC SIC HQIC
-1.446966 -1.400841 -1.447215 -1.428776

> v2=volatility(m5)
> m6=garchFit(~1+garch(1,1),data=intc,trace=F,cond.dist=’sstd’)
> summary(m6)
Title: GARCH Modelling
Call: garchFit(formula=~1+garch(1,1),data=intc,cond.dist="sstd",trace=F)

Mean and Variance Equation: data ∼ 1+garch(1,1) [data = intc]
Conditional Distribution: sstd

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 0.0133343 0.0053430 2.496 0.012572 *
omega 0.0011621 0.0005587 2.080 0.037519 *
alpha1 0.1049289 0.0358860 2.924 0.003456 **
beta1 0.8177875 0.0559863 14.607 < 2e-16 ***
skew 0.8717220 0.0629129 13.856 < 2e-16 ***
shape 7.2344224 2.1018041 3.442 0.000577 ***
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 7.882126 0.6403496
Ljung-Box Test R Q(20) 16.57740 0.6802193
Ljung-Box Test R^2 Q(10) 1.078429 0.999757
Ljung-Box Test R^2 Q(20) 13.03792 0.8757513
LM Arch Test R TR^2 11.18826 0.5128574

Information Criterion Statistics:
AIC BIC SIC HQIC

-1.450899 -1.395550 -1.451257 -1.429071

> v3=volatility(m6)
> par(mfcol=c(3,1))
> plot(tdx,v1,xlab=’year’,ylab=’volatility’,type=’l’,ylim=c(0.06,0.3))
> title(main=’(a) Gaussian’)
> plot(tdx,v2,xlab=’year’,ylab=’volatility’,type=’l’,ylim=c(0.06,0.3))
> title(main=’(b) Student-t’)
> plot(tdx,v3,xlab=’year’,ylab=’volatility’,type=’l’,ylim=c(0.06,0.3))
> title(main=’(c) Skew Student-t’)

> cor(cbind(v1,v2,v3))
v1 v2 v3

v1 1.0000000 0.9936777 0.9944357
v2 0.9936777 1.0000000 0.9998430
v3 0.9944357 0.9998430 1.0000000
>
> library(fBasics)
> basicStats(intc)

intc
nobs 444.000000
Minimum -0.595420
Maximum 0.485508
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Mean 0.014327
Variance 0.016106
Stdev 0.126910
Skewness -0.552618
Kurtosis 3.124026
> tt=-0.5526/sqrt(6/444) % Testing skewness of the data
> tt
[1] -4.753645
> tt=(0.8717-1)/0.0629 % Testing skewness of the model.
> tt
[1] -2.039746
> pv=2*pnorm(tt) % Compute p-value
> pv
[1] 0.04137567
> plot(m6)
Make a plot selection (or 0 to exit):
1: Time Series
2: Conditional SD
3: Series with 2 Conditional SD Superimposed
4: ACF of Observations
5: ACF of Squared Observations
6: Cross Correlation
7: Residuals
8: Conditional SDs
9: Standardized Residuals

10: ACF of Standardized Residuals
11: ACF of Squared Standardized Residuals
12: Cross Correlation between r^2 and r
13: QQ-Plot of Standardized Residuals

Selection: 13

Discussion and Comparison. We have applied three GARCH(1,1) models to
the monthly log returns of Intel stock from January 1973 to December 2009. All
three models fit the data well. If AIC is used in model selection, one selects the
one with skew Student t innovations as the best model for the data. This selection
is also supported by the preliminary analysis that shows significant skewness in the
returns. On the other hand, if BIC is used, then one selects the model with Student
t innovations as the best one. This is not surprising because BIC, in this particular
case, puts a heavier penalty for each parameter used and the p value for testing no
skewness is 0.041, which is only slightly smaller than 0.05. In other words, under
BIC, the penalty is heavier than the contribution of the skew parameter. This example
illustrates that different criteria may select different models in volatility modeling.

Figure 4.13 provides time plots of volatility of the three models entertained. The
plots are in the same scale so that a direct comparison is possible. From the plots, the
three estimated volatility series are essentially the same; it is hard to see any major
difference between the three volatility series. As a matter of fact, the correlation
coefficients between the three volatility series are all close to one; see the attached R
output. Thus, the three entertained models are close to each other.
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Figure 4.13. Time plots of volatility of a GARCH(1,1) model for the monthly log returns of

Intel stock with different innovations: (a) Gaussian, (b) Student t, and (c) Skew Student t.

Table 4.1 shows some volatility forecasts of the three GARCH(1,1) models for
the monthly log returns of Intel stock. The forecast origin is December 2009. As
expected, the forecasts of volatility are also close to each other, supporting further
that the difference between the three innovations is small.

TABLE 4.1. Volatility forecasts for monthly log returns of Intel stocka

Forecast Horizon

Model 1 2 3 4 5 6 9 12

N (0, 1) 0.0975 0.0993 0.1009 0.1023 0.1037 0.105 0.108 0.111
t 0.0951 0.0975 0.0997 0.1016 0.1034 0.105 0.109 0.112
Skew t 0.0954 0.0979 0.1000 0.1019 0.1037 0.105 0.109 0.112

a The forecast origin is December 2009 and the models used are GARCH(1,1) models with Gaussian,
Student t , and skew Student t innovations, respectively.
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4.6.2 Forecasting Evaluation

As the volatility of an asset return is not directly observable, comparing the forecasting
performance of different volatility models is a challenge to data analysts. In the litera-
ture, some researchers use out-of-sample forecasts and compare the volatility forecasts
σ 2

h (�) with the shock a2
h+� in the forecasting sample to assess the forecasting perfor-

mance of a volatility model. This approach often finds a low correlation coefficient
between a2

h+� and σ 2
h (�), that is, low R2. However, such a finding is not surprising

because a2
h+� alone is not an adequate measure of the volatility at time index h + �.

Consider the 1-step ahead forecasts. From a statistical point of view, E (a2
h+1|Fh) =

σ 2
h+1 so that a2

h+1 is a consistent estimate of σ 2
h+1. But it is not an accurate estimate

of σ 2
h+1 because a single observation of a random variable with a known mean value

cannot provide an accurate estimate of its variance. Consequently, such an approach to
evaluate forecasting performance of volatility models is strictly speaking not proper.
For more information concerning forecasting evaluation of GARCH models, readers
are referred to Andersen and Bollerslev (1998).

4.6.3 A Two-Pass Estimation Method

On the basis of Equation (4.15), a two-pass estimation method can be used to estimate
GARCH models. First, ignoring any ARCH effects, one estimates the mean equation
of a return series using the methods discussed in Chapter 2 (e.g., maximum likelihood
method). Denote the residual series by at . Second, treating {a2

t } as an observed time
series, one applies the maximum likelihood method to estimate parameters of Equation
(4.15). Denote the AR and MA coefficient estimates by φ̂i and θ̂i . The GARCH
estimates are obtained as β̂i = θ̂i and α̂i = φ̂i − θ̂i . Obviously, such estimates are
approximations to the true parameters and their statistical properties have not been
rigorously investigated. However, limited experience shows that this simple approach
often provides good approximations, especially when the sample size is moderate or
large. For instance, consider the monthly log returns of the Intel stock of Example
4.3. Using the conditional MLE method, we obtain the model

rt = 0.0143 + at , (1 − 0.9119B)(a2
t − 0.0161) = (1 − 0.7915B)ηt , (4.21)

where all estimates are significantly different from zero at the 5% level and the
variance of ηt is 0.00122. From the estimates, we have β̂1 = 0.7915, α̂1 = 0.9119 −
0.7915 = 0.1204, and φ0 = (1 − 0.9119) × (0.0161) = 0.00142. These approximate
estimates are very close to those in Equation (4.19) or (4.20). The fitted volatility of
this two-pass procedure is also close to those of GARCH(1,1) models. For instance,
the correlation of fitted volatilities between models in Equations (4.20) and (4.21) is
0.9976.

R Demonstration

> yt=intc-mean(intc)
> m1=arima(yt^2,order=c(1,0,1))
> m1



THE INTEGRATED GARCH MODEL 211

Call: arima(x = yt^2, order = c(1,0,1))
Coefficients:

ar1 ma1 intercept
0.9119 -0.7915 0.0161

s.e. 0.0430 0.0635 0.0039

sigma^2 estimated as 0.001223: log likelihood=858.64,aic=-1709.28
> mean(intc)
[1] 0.0143273
> fit=yt^2-m1$residuals
> v3=volatility(m6) % m6 is GARCH(1,1) with skew-t innovations.
> cor(v3,sqrt(fit))
[1] 0.9976242

4.7 THE INTEGRATED GARCH MODEL

If the AR polynomial of the GARCH representation in Equation (4.15) has a unit
root, then we have an IGARCH (integrated generalized autoregressive conditional
heteroscedastic) model. Thus, IGARCH models are unit-root GARCH models. Similar
to ARIMA models, a key feature of IGARCH models is that the impact of past squared
shocks ηt−i = a2

t−i − σ 2
t−i for i > 0 on a2

t is persistent.
An IGARCH(1,1) model can be written as

at = σtεt , σ 2
t = α0 + β1σ

2
t−1 + (1 − β1)a

2
t−1,

where {εt } is defined as before and 1 > β1 > 0. For the monthly log returns of Intel
stock, an estimated IGARCH(1,1) model is

rt = 0.0097 + at , at = σtεt , εt ∼ N (0, 1),

σ 2
t = 0.000348 + 0.1278a2

t−1 + 0.8722σ 2
t−1, (4.22)

where standard error of the estimate in the mean equation is 0.0053, whereas those of
the volatility equation are 0.00018 and 0.0336, respectively. Model checking statistics
show that the fitted IGARCH(1,1) model is adequate in describing the mean and
volatility of Intel stock returns.

The parameter estimates of the IGARCH(1,1) model are not far away from those
of the GARCH(1,1) model in Equation (4.18), but there is a major difference between
the two models. The unconditional variance of at , hence that of rt , is not defined
under the above IGARCH(1,1) model. This seems hard to justify for a log return
series. From a theoretical point of view, the IGARCH phenomenon might be caused
by occasional level shifts in volatility. The actual cause of persistence in volatility
deserves a careful investigation.

When α1 + β1 = 1, repeated substitutions in Equation (4.17) give

σ 2
h (�) = σ 2

h (1) + (� − 1)α0, � ≥ 1, (4.23)
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where h is the forecast origin. Consequently, the effect of σ 2
h (1) on future volatili-

ties is also persistent, and the volatility forecasts form a straight line with slope α0.
Nelson (1990) studied some probability properties of the volatility process σ 2

t under
an IGARCH model. The process σ 2

t is a martingale for which some nice results are
available in the literature. Under certain conditions, the volatility process is strictly
stationary, but not weakly stationary because it does not have the first two moments.

The case of α0 = 0 is of particular interest in studying the IGARCH(1,1) model.
In this case, the volatility forecasts are simply σ 2

h (1) for all forecast horizons; see
Equation (4.23). This special IGARCH(1,1) model is the volatility model used in
RiskMetrics, which is an approach for calculating value at risk; see Tsay (2010,
Chapter 7). The model is also an exponential smoothing model for the {a2

t } series. To
see this, rewrite the model as

σ 2
t = (1 − β1)a

2
t−1 + β1σ

2
t−1

= (1 − β1)a
2
t−1 + β1[(1 − β)a2

t−2 + β1σ
2
t−2]

= (1 − β1)a
2
t−1 + (1 − β1)β1a2

t−2 + β2
1 σ 2

t−2.

By repeated substitutions, we have

σ 2
t = (1 − β1)[a

2
t−1 + β1a2

t−2 + β2
1 a3

t−3 + · · ·],
which is the well-known exponential smoothing formation with β1 being the dis-
counting factor. Exponential smoothing methods can thus be used to estimate such an
IGARCH(1,1) model.

R Demonstration

> source("Igarch.R")
> mm=Igarch(intc)
[1] -261.3556
0: -261.35565: 0.0143273 0.00161062 0.100000
3: -299.82581: 0.00754877 0.00211435 0.325506
.....
21: -308.24866: 0.00962287 0.000349070 0.128039

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 0.009666313 0.005338563 1.81066 0.0701937 .
omega 0.000347561 0.000181948 1.91022 0.0561052 .
alpha 0.127818122 0.033601301 3.80396 0.0001424 ***
> names(mm)
[1] "par" "volatility"

Remark. We use a simple R script to estimate the IGARCH(1,1) model with Gaussian
innovations. The script is available on the web page of the book. �
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4.8 THE GARCH-M MODEL

In finance, the return of an asset may depend on its volatility. To model such a
phenomenon, one may consider the GARCH-M model, where “M” stands for GARCH
in the mean . A simple GARCH(1,1)-M model can be written as

rt = μ + cσ 2
t + at , at = σtεt ,

σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1, (4.24)

where μ and c are constants. The parameter c is called the risk premium parameter.
A positive c indicates that the return is positively related to its past volatility. Other
specifications of risk premium have also been used in the literature, including rt =
μ + cσt + at and rt = μ + c ln(σ 2

t ) + at .
The formulation of the GARCH-M model in Equation (4.24) implies that there

are serial correlations in the return series rt . These serial correlations are introduced
by those in the volatility process {σ 2

t }. The existence of risk premium is, therefore,
another reason that some historical stock returns have serial correlations.

For illustration, we consider a GARCH(1,1)-M model with Gaussian innovations
for the monthly log returns of Intel stock from January 1973 to December 2009. For
numerical stability, we use the percentage returns in this section. In other words, rt
now denotes the log returns in percentages. The fitted model is

rt = 1.025 + 0.00081σ 2
t + at , at = σtεt , εt ∼ N (0, 1) (4.25)

σ 2
t = 9.376 + 0.087a2

t−1 + 0.851σ 2
t−1, (4.26)

where the standard errors for the two parameters in Equation (4.25) are 1.347 and
0.0092, respectively, and those for the parameters in Equation (4.26) are 3.977, 0.027,
and 0.040, respectively. The estimated risk premium for the monthly log returns of
Intel stock is small and insignificant. Here, the estimation is carried out in R with a
simple script available on the web page of the book.

As a second demonstration, Figure 4.14 shows the monthly excess returns of
the S&P 500 index from 1926 to 1991. See Tsay (2010, Chapter 3) for various
volatility models fitted to this series. Again, the returns are in percentages. A simple
GARCH(1,1) model for the series is

rt = 0.745 + at , at = σtεt , εt ∼ N (0, 1),

σ 2
t = 0.806 + 0.122a2

t−1 + 0.854σ 2
t−1,

where the standard error of the parameter in the mean equation is 0.154 and those
of the parameters in the volatility equation are 0.283, 0.022, and 0.022, respectively.
Clearly, all estimates are significant at the 5% level. Model checking statistics show
that, except for normality, the model fits the data well.
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Figure 4.14. Time plot of monthly excess returns, in percentages, of the S&P 500 index from

January 1926 to December 1991.

We also apply a GARCH(1,1)-M model to the returns and obtain

rt = 0.6561 + 0.0041σ 2
t + at , at = σtεt , εt ∼ N (0, 1),

σ 2
t = 0.7936 + 0.1222a2

t−1 + 0.8547σ 2
t−1, (4.27)

where the standard errors of the parameters in the mean equation are 0.2458 and
0.0089, respectively, and those of the parameters in Equation (4.27) are 0.2830, 0.0221,
and 0.0218, respectively. Again, the risk premium is not significant at the usual 5%
level. Consequently, the model reduces to the usual GARCH(1,1) model for the data.

R Demonstration

> y=intc*100 % Intel stock returns in percentages
> source("garchM.R") % Compile the script
> garchM(y)
[1] "initial estimates:"
(Intercept) v1 ar0 ar1 ma1
0.472685490 0.0059504 14.1506718 0.1203339 0.7915216

Estimation results of GARCH(1,1)-M model:
estimates: 1.02491 0.000806 9.37589 0.086950 0.850682
std.errors: 1.34736 0.009245 3.97716 0.026644 0.040035
t-ratio: 0.76068 0.087235 2.35744 3.263355 21.2486
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% Monthly excess returns, in percentages, of the S&P 500 index
> sp5=scan(file=’sp500.txt’)
> sp5=sp5*100
> m2=garchFit( 1+garch(1,1),data=sp5,trace=F)
> summary(m2)
Title: GARCH Modelling
Mean and Variance Equation: data ∼ 1+garch(1,1) [data=sp5]
Conditional Distribution: norm
Coefficients:

Estimate Std. Error t value Pr(>|t|)
mu 0.74497 0.15377 4.845 1.27e-06 ***
omega 0.80615 0.28333 2.845 0.00444 **
alpha1 0.12198 0.02202 5.540 3.02e-08 ***
beta1 0.85436 0.02175 39.276 < 2e-16 ***
---
Standardised Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 80.32111 0
Shapiro-Wilk Test R W 0.9850518 3.14157e-07
Ljung-Box Test R Q(10) 11.22050 0.340599
Ljung-Box Test R Q(20) 24.29896 0.2295768
Ljung-Box Test R^2 Q(10) 9.920157 0.4475259
Ljung-Box Test R^2 Q(20) 16.75081 0.6690903

> garchM(sp5)
Estimation results of GARCH(1,1)-M model:
estimates: 0.65613 0.004096 0.793615 0.12219 0.85465
std.errors: 0.24579 0.008938 0.283022 0.02209 0.02176
t-ratio: 2.66943 0.458335 2.804075 5.53226 39.2788

4.9 THE EXPONENTIAL GARCH MODEL

To overcome some weaknesses of the GARCH model in handling financial time
series, Nelson (1991) proposes the EGARCH model. In particular, to allow for asym-
metric effects between positive and negative asset returns, he considered the weighted
innovation

g(εt ) = θεt + γ [|εt | − E (|εt |)], (4.28)

where θ and γ are real constants. Both εt and |εt | − E (|εt |) are zero-mean iid
sequences with continuous distributions. Therefore, E [g(εt )] = 0. The asymmetry
of g(εt ) can be easily seen by rewriting it as

g(εt ) =
{

(θ + γ )εt − γ E (|εt |) ifεt ≥ 0,

(θ − γ )εt − γ E (|εt |) ifεt < 0.
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Remark. For the standard Gaussian random variable εt , E (|εt |) = √
2/π. For the

standardized Student t distribution in Equation (4.7), we have

E (|εt |) = 2
√

v − 2
((v + 1)/2)

(v − 1)
(v/2)
√

π
.

�

An EGARCH(m , s) model can be written as

at = σtεt , ln(σ 2
t ) = α0 + 1 + β1B + · · · + βs−1Bs−1

1 − α1B − · · · − αm Bm
g(εt−1), (4.29)

where α0 is a constant, B is the back-shift (or lag) operator such that Bg(εt ) =
g(εt−1), and 1 + β1B + · · · + βs−1Bs−1 and 1 − α1B − · · · − αmBm are polynomials
with zeros outside the unit circle and have no common factors. By outside the unit
circle, we mean that absolute values of the zeros are greater than 1. Again, Equation
(4.29) uses the usual ARMA parameterization to describe the evolution of the con-
ditional variance of at . On the basis of this representation, some properties of the
EGARCH model can be obtained in a similar manner as those of the GARCH model.
For instance, the unconditional mean of ln(σ 2

t ) is α0. However, the model differs from
the GARCH model in several ways. First, it uses logged conditional variance to relax
the positiveness constraint of model coefficients. Second, the use of g(εt ) enables the
model to respond asymmetrically to positive and negative lagged values of at . Some
additional properties of the EGARCH model can be found in Nelson (1991).

To better understand the EGARCH model, let us consider the simple model with
order (1,1):

at = σtεt , (1 − αB) ln(σ 2
t ) = (1 − α)α0 + g(εt−1), (4.30)

where the εt are iid standard normal and the subscript of α1 is omitted. In this case,
E (|εt |) = √

2/π and the model for ln(σ 2
t ) becomes

(1 − αB) ln(σ 2
t ) =

{
α∗ + (γ + θ)εt−1 if εt−1 ≥ 0,

α∗ + (γ − θ)(−εt−1) if εt−1 < 0,
(4.31)

where α∗ = (1 − α)α0 − √
2/πγ . This is a nonlinear function similar to that of the

threshold autoregressive (TAR) model of Tong (1978, 1990). It suffices to say that for
this simple EGARCH model the conditional variance evolves in a nonlinear manner
depending on the sign of at−1. Specifically, we have

σ 2
t = σ 2α

t−1 exp(α∗)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
(γ + θ)

at−1

σt−1

]
if at−1 ≥ 0,

exp

[
(γ − θ)

|at−1|
σt−1

]
if at−1 < 0.
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The coefficients (γ + θ) and (γ − θ) show the asymmetry in response to positive
and negative at−1. The model is, therefore, nonlinear if θ �= 0. Since negative shocks
tend to have larger impacts, we expect θ to be negative. For higher order EGARCH
models, the nonlinearity becomes much more complicated. Cao and Tsay (1992) used
nonlinear models, including EGARCH models, to obtain multistep ahead volatility
forecasts.

4.9.1 An Illustrative Example

Nelson (1991) applies an EGARCH model to the daily excess returns of the value-
weighted market index from the Center for Research in Security Prices from July 1962
to December 1987. The excess returns are obtained by removing monthly Treasury
bill returns from the value-weighted index returns, assuming that the Treasury bill
return was constant for each calendar day within a given month. There are 6408
observations. Denote the excess return by rt . The model used is as follows:

rt = φ0 + φ1rt−1 + cσ 2
t + at , (4.32)

ln(σ 2
t ) = α0 + ln(1 + wNt ) + 1 + βB

1 − α1B − α2B2
g(εt−1),

where σ 2
t is the conditional variance of at given Ft−1, Nt is the number of nontrad-

ing days between trading days t − 1 and t , α0 and w are real parameters, g(εt ) is
defined in Equation (4.28), and εt follows a GED in Equation (4.10). Similar to a
GARCH-M model, the parameter c in Equation (4.32) is the risk premium parameter.
Table 4.2 gives the parameter estimates and their standard errors of the model. The
mean equation of model (4.32) has two features that are of interest. First, it uses an
AR(1) model to take care of possible serial correlation in the excess returns. Second,
it uses the volatility σ 2

t as a regressor to account for risk premium. The estimated risk
premium is negative, but statistically insignificant.

TABLE 4.2. Estimated AR(1)−EGARCH(2,2) Model for the Daily Excess Returns of the
Value-Weighted CRSP Market Index: July 1962 to December 1987.

Par. α0 w γ α1 α2 β

Est. −10.06 0.183 0.156 1.929 −0.929 −0.978
Err. 0.346 0.028 0.013 0.015 0.015 0.006

Par. θ φ0 φ1 c v
Est. −0.118 3.5·10−4 0.205 −3.361 1.576
Err. 0.009 9.9·10−5 0.012 2.026 0.032
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4.9.2 An Alternative Model Form

For ease in estimation, one can use an alternative form for the EGARCH(m , s) model:

ln(σ 2
t ) = α0 +

m∑
i=1

αi
|at−i | + γi at−i

σt−i
+

s∑
j=1

βj ln(σ 2
t−j ). (4.33)

Here, a positive at−i contributes αi (1 + γi )|εt−i | to the log volatility, whereas a
negative at−i gives αi (1 − γi )|εt−i |, where εt−i = at−i /σt−i . The γi parameter thus
signifies the leverage effect of at−i . Again, we expect γi to be negative in real appli-
cations. This model form has been used by some packages, for example, S-Plus. We
use an R script Egarch to estimate an EGARCH(1,1) model.

4.9.3 Second Example

As another illustration, we consider the monthly log returns of IBM stock from January
1967 to December 2009 for 516 observations. Figure 4.15a shows the time plot of the
series. Sample ACF and the Ljung–Box statistics indicate that there are no significant
serial correlations in the data so that we proceed to volatility modeling. For example,
Q(12) = 7.40 with p value 0.83 for the log return series.

Using the alternative parameterization in Equation (4.33) and noting that εt =
at/σt , we rewrote Equation (4.30) as

ln(σ 2
t ) = α0 + α1(|εt−1| + γ1εt−1) + β1 ln(σ 2

t−1).
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Figure 4.15. Time plots of monthly log returns of IBM stock from January 1967 to December

2009: (a) log returns and (b) standardized residuals of an EGARCH(1,1) model.
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Entertaining this EGARCH(1,1) model, we obtain, for IBM monthly log returns,

rt = 0.0067 + at , at = σtεt , εt ∼ N (0, 1),

ln(σ 2
t ) = −0.5975 + 0.213(|εt−1| − 0.4355εt−1) + 0.9196 ln(σ 2

t−1), (4.34)

where all parameter estimates are statistically significant at the 5% level. See the
R demonstration for details. For model checking, the Ljung–Box statistics give
Q(10) = 5.28(0.87) and Q(20) = 20.97(0.40) for the standardized residuals ãt
= at/σt and Q(10) = 5.01(0.89) and Q(20) = 14.26(0.82) for the squared series
ã2

t , where the number in parentheses denotes p value. The model fits the data
reasonably well.

From the estimated equation (Eq. 4.34) and using
√

2/π ≈ 0.7979, we obtain the
volatility equation as

ln(σ 2
t ) = −0.5975 + 0.9196 ln(σ 2

t−1) +
{

0.1203εt−1 if εt−1 ≥ 0,

−0.3058εt−1 if εt−1 < 0.

Taking antilog transformation, we have

σ 2
t = σ 2×0.9196

t−1 e−0.5975 ×
{

e0.1203εt−1 if εt−1 ≥ 0,

e−0.3058εt−1 if εt−1 < 0.

This equation highlights the asymmetric responses in volatility to the past positive and
negative shocks under an EGARCH model. For example, for a standardized shock
with magnitude 2 (i.e., two standard deviations), we have

σ 2
t (εt−1 = −2)

σ 2
t (εt−1 = 2)

= exp[−0.3058 × (−2)]

exp(0.1203 × 2)
= e0.371 = 1.449.

Therefore, the impact of a negative shock of size two standard deviations is about
44.9% higher than that of a positive shock of the same size. This example clearly
demonstrates the asymmetric feature of EGARCH models. In general, the bigger the
shock, the larger the difference in volatility impact.

R Demonstration. Output edited.

> source("Egarch.R") % Compile R script
> da=read.table("m-ibmsp6709.txt",header=T) % Load data
> dim(da) % Check sample size of the data
[1] 516 3
> ibm=log(da$ibm+1) % Take log transformation
> Box.test(ibm,lag=12,type=’Ljung’) % Check serial correlations

Box-Ljung test
data: ibm
X-squared = 7.4042, df = 12, p-value = 0.8298
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> m1=Egarch(ibm) % Model fitting
Estimation results of EGARCH(1,1) model:
estimates: 0.00671172 -0.5975393 0.21298 -0.4355012 0.919648
std.errors: 0.00287457 0.2371713 0.058016 0.1721217 0.039416
t-ratio: 2.334859 -2.519442 3.671078 -2.530194 23.33172
> names(m1)
[1] "residuals" "volatility"
> stresi=m1$residuals/m1$volatility % Obtain standardized residuals
> tdx=c(1:516)/12+1967 % Compute time index
> par(mfcol=c(2,1)) % Plotting
> plot(tdx,ibm,xlab=’year’,ylab=’logrtn’,type=’l’)
> plot(tdx,stresi,xlab=’year’,ylab=’stresi’,type=’l’)
> Box.test(stresi,lag=10,type=’Ljung’) % Model checking

Box-Ljung test
data: stresi
X-squared = 5.2807, df = 10, p-value = 0.8717
> Box.test(stresi,lag=20,type=’Ljung’)

Box-Ljung test
data: stresi
X-squared = 20.971, df = 20, p-value = 0.3988
> Box.test(stresi^2,lag=10,type=’Ljung’)

Box-Ljung test
data: stresi^2
X-squared = 5.0127, df = 10, p-value = 0.8903
> Box.test(stresi^2,lag=20,type=’Ljung’)

Box-Ljung test
data: stresi^2
X-squared = 14.2643, df = 20, p-value = 0.8168

4.9.4 Forecasting Using an EGARCH Model

We use the EGARCH(1,1) model to illustrate multistep ahead forecasts of EGARCH
models, assuming that the model parameters are known and the innovations are stan-
dard Gaussian. For such a model, we have

ln(σ 2
t ) = (1 − α1)α0 + α1 ln(σ 2

t−1) + g(εt−1),

g(εt−1) = θεt−1 + γ (|εt−1| −
√

2/π).

Taking exponential, the model becomes

σ 2
t = σ

2α1
t−1 exp[(1 − α1)α0] exp[g(εt−1)],

g(εt−1) = θεt−1 + γ (|εt−1| −
√

2/π). (4.35)

Let h be the forecast origin. For the 1-step ahead forecast, we have

σ 2
h+1 = σ

2α1
h exp[(1 − α1)α0] exp[g(εh)],
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where all of the quantities on the right-hand side are known. Thus, the 1-step ahead
volatility forecast at the forecast origin h is simply σ̂ 2

h (1) = σ 2
h+1 given earlier. For

the 2-step ahead forecast, Equation (4.35) gives

σ 2
h+2 = σ

2α1
h+1 exp[(1 − α1)α0] exp[g(εh+1)].

Taking conditional expectation at time h , we have

σ̂ 2
h (2) = σ̂

2α1
h (1) exp[(1 − α1)α0]Eh{exp[g(εh+1)]},

where Eh denotes a conditional expectation taken at the time origin h . The prior
expectation can be obtained as follows:

E {exp[g(ε)]} =
∫ ∞

−∞
exp[θε + γ (|ε| −

√
2/π)]f (ε)dε

= exp
(
−γ

√
2/π

) [∫ ∞

0
e(θ+γ )ε 1√

2π
e−ε2/2dε

+
∫ 0

−∞
e(θ−γ )ε 1√

2π
e−ε2/2dε

]

= exp
(
−γ

√
2/π

) [
e(θ+γ )2/2�(θ + γ ) + e(θ−γ )2/2�(γ − θ)

]
,

where f (ε) and �(x) are the probability density function and CDF (cumulative distri-
bution function) of the standard normal distribution, respectively. Consequently, the
2-step ahead volatility forecast is

σ̂ 2
h (2) = σ̂

2α1
h (1) exp

[
(1 − α1)α0 − γ

√
2/π

]
× {

exp[(θ + γ )2/2]�(θ + γ ) + exp[(θ − γ )2/2]�(γ − θ)
}
.

Repeating the previous procedure, we obtain a recursive formula for a j -step ahead
forecast:

σ̂ 2
h (j ) = σ̂

2α1
h (j − 1) exp(ω)

× {
exp[(θ + γ )2/2]�(θ + γ ) + exp[(θ − γ )2/2]�(γ − θ)

}
,

where ω = (1 − α1)α0 − γ
√

2/π. The values of �(θ + γ ) and �(γ − θ) can be
obtained from most statistical packages.
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4.10 THE THRESHOLD GARCH MODEL

Another volatility model commonly used to handle leverage effects is the threshold
generalized autoregressive conditional heteroscedastic (or TGARCH) model; see
Glosten et al. (1993) and Zakoian (1994). A TGARCH(m , s) model assumes
the form

σ 2
t = α0 +

m∑
i=1

(αi + γi Nt−i )a
2
t−i +

s∑
j=1

βj σ
2
t−j , (4.36)

where Nt−i is an indicator for negative at−i , that is,

Nt−i =
{

1 if at−i < 0,

0 if at−i ≥ 0,

and αi , γi , and βj are nonnegative parameters satisfying conditions similar to those of
GARCH models. From the model, it is seen that a positive at−i contributes αi a

2
t−i to

σ 2
t , whereas a negative at−i has a larger impact (αi + γi )a

2
t−i with γi > 0. The model

uses zero as its threshold to separate the impacts of past shocks. Other threshold values
can also be used; see Tsay (2010, Chapter 4) for the general concept of threshold
models. Model (4.36) is also called the GJR model because Glosten et al. (1993)
proposed essentially the same model.

For illustration, consider the daily log returns, in percentages, of the exchange
rate between US Dollar and Euro from January 4, 1999, to August 20, 2010; see
Figure 4.3. Using a simple R script available on the book web page, we obtain the
fitted TGARCH(1,1) as

rt = 0.0122 + at , at = σtεt , εt ∼ N (0, 1),

σ 2
t = 0.00128 + (0.0223 + 0.0125Nt−1)a

2
t−1 + 0.9687σ 2

t−1, (4.37)

where the standard error of the parameter for the mean equation is 0.0107 and the
standard errors of the parameters in the volatility equation are 0.00061, 0.0052, 0.0071,
and 0.0044, respectively. To check the fitted model, we have Q(10) = 13.38(0.20)
and Q(20) = 22.87(0.30) for the standardized residual ãt and Q(10) = 12.89(0.23)
and Q(20) = 27.23(0.13) for ã2

t . The model is adequate in modeling the first two
conditional moments of the log returns of exchange rate. The coefficient of the mean
equation is insignificant. For the volatility equation, all estimates are significant. To test
the leverage effect, we consider the null hypothesis H0 : γ1 ≤ 0 versus the alternative
hypothesis Ha : γ1 > 0. The t-ratio of the test is 1.772 with p value 0.038 so that the
leverage effect is significant at the 5% level.

Figure 4.16 provides time plots of the fitted volatility and the standardized resid-
uals of the TGARCH(1,1) model. As expected, the volatility was higher during the
recent financial crisis. The standardized residuals appear to be random, but their mag-
nitudes indicate the possibility of heavy tails.
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Figure 4.16. Time plots of a TGARCH(1,1) model for the daily log returns of Dollar/Euro

exchange rate from January 4, 1999, to August 20, 2010: (a) fitted volatility and (b) standardized

residuals.

R Demonstration

> da=read.table("d-useu9910.txt",header=T)
> fx=log(da$rate)
> eu=diff(fx)*100
> source(’Tgarch11.R’)
> m1=Tgarch11(eu)
[1] 2834.995
0: 2834.9946: 0.00243980 0.0426591 0.100000 0.100000 0.800000

......
48: 2731.8319: 0.0122412 0.00127505 0.0223472 0.0125162 0.968720

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 0.012241549 0.010729840 1.14089 0.253916
omega 0.001275045 0.000618464 2.06163 0.039243 *
alpha 0.022347138 0.005249457 4.25704 2.0715e-05 ***
gam1 0.012516327 0.007062559 1.77221 0.076360 .
beta 0.968720367 0.004357861 222.29265 < 2.22e-16 ***
---
> names(m1)
[1] "residuals" "volatility" "par"
> at=m1$residuals
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> sigt=m1$volatility
> resi=at/sigt
> Box.test(resi,lag=10,type=’Ljung’)

Box-Ljung test
data: resi
X-squared = 13.3818, df = 10, p-value = 0.2031
> Box.test(resi,lag=20,type=’Ljung’)

Box-Ljung test
data: resi
X-squared = 22.8733, df = 20, p-value = 0.2951
> Box.test(resi^2,lag=10,type=’Ljung’)

Box-Ljung test
data: resi^2
X-squared = 12.8935, df = 10, p-value = 0.2297
> Box.test(resi^2,lag=20,type=’Ljung’)

Box-Ljung test
data: resi^2
X-squared = 27.2298, df = 20, p-value = 0.1289

4.11 ASYMMETRIC POWER ARCH MODELS

The TGARCH model belongs to the class of asymmetric power autoregressive
conditional heteroscedastic (APARCH) models of Ding et al. (1993). A general
APARCH(m , s) model can be written as

rt = μt + at , at = σtεt , εt ∼ D(0, 1)

σ δ
t = ω +

m∑
i=1

αi (|at−i | + γi at−i )
δ +

s∑
j=1

βj σ
δ
t−j , (4.38)

where μt is the conditional mean, D(0, 1) denotes a distribution with mean zero
and variance 1, δ is a positive real number, and the coefficients ω, αi , γi , and βj
satisfy some regularity conditions so that the volatility is positive. Similar to GARCH
models, the APARCH(1,1) model is often used in practice. Three special cases of
the APARCH models are of interest. When δ = 2, the APARCH model reduces to
a TGARCH model. When δ = 1, the model uses volatility directly in the volatility
equation. The case of δ = 0 is taking as the limit of δ → 0 and in this case the model
becomes the EGARCH model of Nelson (1991).

The power function in Equation (4.38) is a transformation used to improve the
goodness of fit of the model. This appears to be a sensible approach if one is interested
in prediction. On the other hand, except for some special values, it seems hard to find
a good interpretation for the power parameter δ. To demonstrate, consider the log
return series of the Dollar/Euro exchange rate. A fitted APARCH(1,1) model with
Gaussian innovations is

rt = 0.0128 + at , at = σtεt , εt ∼ N (0, 1)

σ 1.67
t = 0.0016 + 0.0313(at−1 + 0.1135at−1)

1.67 + 0.9689σ 1.67
t−1 .
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Model checking statistics suggest that this model fits the data reasonably well. How-
ever, it is hard to find the meaning of δ̂ = 1.67. On the other hand, the standard error
of δ̂ is 0.406 so that δ̂ is not significantly different from 2. Thus, in this particular
case, one can simply fix δ = 2, which results in using a TGARCH(1,1) model. As
expected, fixing δ = 2 gives results very close to the TGARCH(1,1) model obtained
before.

R Demonstration

> m1=garchFit(~1+aparch(1,1),data=eu,trace=F)
> summary(m1)
Title: GARCH Modelling
Call: garchFit(formula=~1+aparch(1,1),data=eu,trace=F)

Mean and Variance Equation:
data ∼ 1 + aparch(1, 1) [data = eu]

Conditional Distribution: norm

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu 0.0127649 0.0107626 1.186 0.2356
omega 0.0015919 0.0007226 2.203 0.0276 *
alpha1 0.0313680 0.0053350 5.880 4.11e-09 ***
gamma1 0.1135337 0.0711911 1.595 0.1108
beta1 0.9689156 0.0038405 252.292 < 2e-16 ***
delta 1.6743115 0.4057131 4.127 3.68e-05 ***
---
Standardised Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 50.20525 1.253342e-11
Shapiro-Wilk Test R W 0.9956706 1.606077e-07
Ljung-Box Test R Q(10) 13.37689 0.2033562
Ljung-Box Test R Q(20) 22.84736 0.2963516
Ljung-Box Test R^2 Q(10) 13.1561 0.2150747
Ljung-Box Test R^2 Q(20) 27.44886 0.1231014
LM Arch Test R TR^2 14.35738 0.2784714

Information Criterion Statistics:
AIC BIC SIC HQIC

1.869014 1.881269 1.869006 1.873428
>
> m2=garchFit(~1+aparch(1,1),data=eu,delta=2,include.delta=F,trace=F)
> summary(m2)
Title: GARCH Modelling
Call:
garchFit(formula=~1+aparch(1,1),data=eu,delta=2,include.delta=F,trace=F)

Mean and Variance Equation:
data ∼ 1 + aparch(1, 1) [data = eu]
Conditional Distribution: norm

Error Analysis:
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Estimate Std. Error t value Pr(>|t|)
mu 0.0122646 0.0107289 1.143 0.2530
omega 0.0012745 0.0005752 2.216 0.0267 *
alpha1 0.0282723 0.0038637 7.317 2.53e-13 ***
gamma1 0.1100242 0.0649051 1.695 0.0900 .
beta1 0.9687115 0.0039421 245.735 < 2e-16 ***
---
Log Likelihood: -2731.850 normalized: -0.9326902

Standardised Residuals Tests:
Statistic p-Value

Jarque-Bera Test R Chi^2 49.97677 1.405021e-11
Shapiro-Wilk Test R W 0.9956783 1.645761e-07
Ljung-Box Test R Q(10) 13.38285 0.2030469
Ljung-Box Test R Q(20) 22.87265 0.2950908
Ljung-Box Test R^2 Q(10) 12.89586 0.2295531
Ljung-Box Test R^2 Q(20) 27.24036 0.128636
LM Arch Test R TR^2 14.29661 0.2821695

Information Criterion Statistics:
AIC BIC SIC HQIC

1.868795 1.879007 1.868789 1.872472
> plot(m2)

4.12 NONSYMMETRIC GARCH MODEL

Another GARCH family model that can capture asymmetric volatility responses to
past positive and negative shocks is proposed by Engle and Ng (1993) and studied by
Duan (1995). It assumes the form

rt = μt + at , at = σtεt , εt ∼ D(0, 1)

σ 2
t = β0 + β1σ

2
t−1 + β2(at−1 − θσt−1)

2, (4.39)

where μt is the conditional mean, D(0, 1) denotes a distribution with mean zero and
variance 1, βi are nonnegative parameters with β0 > 0, and θ is a leverage parameter.
The model in Equation (4.39) is referred to as a nonsymmetric GARCH(1,1), or
NGARCH(1,1), model. It reduces to a GARCH(1,1) model if θ = 0.

To study properties of NGARCH(1,1) model, we rewrite Equation (4.39) as

σ 2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1(εt−1 − θ)2. (4.40)

Taking expectation and using independence between εt−1 and σt−1, we have

E (σ 2
t ) = β0 + β1E (σ 2

t−1) + β2E (σ 2
t−1)E (εt−1 − θ)2

= β0 + β1E (σ 2
t−1) + β2E (σ 2

t−1)(1 + θ2).
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If rt is weakly stationary, E (σ 2
t ) = E (σ 2

t−1) and we have

E (σ 2
t ) = β0

1 − β1 − β2(1 + θ2)
,

which is the unconditional variance of rt . Consequently, we require that 1 − β1 −
β2(1 + θ2)> 0 for the NGARCH(1,1) model. Multiplying Equation (4.40) by εt−1
and taking expectation, we obtain

E (εt−1σ
2
t ) = −2θβ2E (σ 2

t−1) = −2θβ0β2

1 − β1 − β2(1 + θ2)
.

This result says that if θ > 0 and β2 > 0, then εt−1 is negatively related to σ 2
t . There-

fore, θ is a leverage parameter and should be positive. Finally, it can be shown that,
under certain conditions, the shock at of a NGARCH(1,1) model has heavy tails even
if εt is Gaussian; see Duan (1995).

For demonstration, we apply an NGARCH(1,1) model to the log returns, in per-
centages, of the Dollar/Euro exchange rate from January 4, 1999, to August 20, 2010.
Using a simple R script available on the book web page, we obtain the model

rt = −0.0011 + at , at = σtεt , εt ∼ N (0, 1)

σ 2
t = 0.00237 + 0.9618σ 2

t−1 + 0.02119σ 2
t−1(εt−1 − 0.731)2, (4.41)

where all estimates, but the mean return −0.0011, are significant at the 5% level.
The Ljung–Box statistics of the standardized residuals ãt and their squared series
fail to reject the model. For instance, we have Q(10) = 14.78(0.14) and 12.94(0.23),
respectively, for ãt and ã2

t , where the number in parentheses denotes p value. Consider
the leverage parameter θ . The estimate 0.731 has a t-ratio 2.92, so that the leverage
effect is significant at the 5% level. Therefore, the NGARCH(1,1) model supports
similar inference as the TGARCH(1,1) model for the exchange rate series.

Figure 4.17 provides time plots of the fitted volatility of NGARCH(1,1) model
in Equation (4.41) and the squared residuals of the log returns. Compared with that
of Figure 4.16, we see that the two models provide similar volatility estimates.

R Demonstration

> da=read.table("d-useu9910.txt",header=T)
> fx=log(da$rate)
> eu=diff(fx)*100
> source("Ngarch.R")
> m1=Ngarch(eu)

Estimation results of NGARCH(1,1) model:
estimates: -0.001094 0.0023667 0.961805 0.021186 0.730962
std.errors: 0.010809 0.0005806 0.006046 0.003605 0.250155
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t-ratio: -0.101217 4.076674 159.0863 5.877186 2.922037
> res=m1$residuals
> vol=m1$volatility
> resi=res/vol
> Box.test(resi,lag=10,type=’Ljung’)

Box-Ljung test
data: resi
X-squared = 14.776, df = 10, p-value = 0.1404

> Box.test(resi^2,lag=10,type=’Ljung’)
Box-Ljung test

data: resi^2
X-squared = 12.9434, df = 10, p-value = 0.2269

Figure 4.18 compares the volatilities of NGARCH(1,1) and GARCH(1,1) models
with Gaussian innovations for the daily log returns of Dollar/Euro exchange rate.
The solid line denotes the volatility of the traditional GARCH(1,1) model. Some
differences are seen from the plot, indicating the effect of negative returns on the
volatility. The overall pattern of the volatility, however, remains unchanged.

4.13 THE STOCHASTIC VOLATILITY MODEL

An alternative approach to describe the volatility evolution of a financial time series
is to introduce an innovation to the conditional variance equation of at ; see Melino
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Figure 4.17. Time plots of an NGARCH(1,1) model for the daily log returns of Dollar/Euro

exchange rate from January 4, 1999, to August 20, 2010: (a) fitted volatility and (b) squared

residuals.
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Figure 4.18. Time plots of NGARCH and GARCH volatility for daily log returns of Dollar/Euro

exchange rate from January 4, 1999, to August 20, 2010. The solid and dashed lines are for

GARCH(1,1) and NGARCH(1,1) models, respectively.

and Turnbull (1990), Taylor (1994), Harvey et al. (1994), and Jacquier et al. (1994).
The resulting model is referred to as a stochastic volatility (SV) model . Similar to
EGARCH models, to ensure positiveness of the conditional variance, SV models use
ln(σ 2

t ) instead of σ 2
t . An SV model is defined as

at = σtεt , (1 − α1B − · · · − αm Bm) ln(σ 2
t ) = α0 + vt , (4.42)

where the εt are iid N (0, 1), the vt are iid N (0, σ 2
v ), {εt } and {vt } are independent,

α0 is a constant, and all zeros of the polynomial 1 − ∑m
i=1 αi B

i are greater than 1 in
modulus. Adding the innovation vt substantially increases the flexibility of the model
in describing the evolution of σ 2

t , but it also increases the difficulty in parameter
estimation. To estimate an SV model, we need a quasi-likelihood method via Kalman
filtering or a Monte Carlo method. Jacquier et al. (1994) provide some comparison of
estimation results between quasi-likelihood and Markov chain Monte Carlo (MCMC)
methods. The difficulty in estimating an SV model is understandable because for each
shock at the model uses two innovations εt and vt . Readers are referred to Tsay (2010,
Chapter 12) for using MCMC methods to estimate SV models. For more discussions
on SV models, see Taylor (1994).
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Figure 4.19. The sample ACF of daily absolute log returns for (a) the S&P 500 index and (b)

IBM stock for the period from July 3, 1962, to December 31, 2003. The two horizontal lines

denote the asymptotic 5% limits.

The appendices of Jacquier et al. (1994) provide some properties of the SV model
when m = 1. For instance, with m = 1, we have

ln(σ 2
t ) ∼ N

(
α0

1 − α1
,

σ 2
v

1 − α2
1

)
≡ N (μh , σ 2

h ),

and E (a2
t ) = exp(μh + σ 2

h /2), E (a4
t ) = 3 exp(2μ2

h + 2σ 2
h ), and corr(a2

t , a2
t−i ) =

[exp(σ 2
h αi

1) − 1]/[3 exp(σ 2
h ) − 1]. Limited experience shows that SV models often

provided improvements in model fitting, but their contributions to out-of-sample
volatility forecasts received mixed results.

4.14 LONG-MEMORY STOCHASTIC VOLATILITY MODELS

More recently, the SV model is further extended to allow for long memory in volatility,
using the idea of fractional difference. As stated in Chapter 2, a time series is a
long-memory process if its autocorrelation function decays at a hyperbolic, instead
of an exponential, rate as the lag increases. The extension to long-memory models
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Figure 4.20. Time plots of estimated monthly volatility for the log returns of the S&P 500

index from January 1980 to August 2010: (a) daily log returns form a white noise series, (b)

daily log returns follow an MA(1) model, and (c) based on monthly returns from February

1967 to August 2010 and a Gaussian GARCH(1, 1) model.

in volatility study is motivated by the fact that the autocorrelation function of the
squared or absolute-valued series of an asset return often decays slowly, even though
the return series has no serial correlation; see Ding et al. (1993). Figure 4.19 shows
the sample ACF of the daily absolute returns for IBM stock and the S&P 500 index
from July 3, 1962, to December 31, 2003. These sample ACFs are positive with
moderate magnitude, but decay slowly.

A simple long-memory stochastic volatility (LMSV) model can be written as

at = σtεt , σt = σ exp(ut /2), (1 − B)d ut = ηt , (4.43)

where σ > 0, the εt are iid N (0, 1), the ηt are iid N (0, σ 2
η ) and independent of εt ,

and 0 < d < 0.5. The feature of long memory stems from the fractional difference
(1 − B)d , which implies that the ACF of ut decays slowly at a hyperbolic, instead of
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an exponential, rate as the lag increases. For model lmsv, we have

ln(a2
t ) = ln(σ 2) + ut + ln(ε2

t )

= [ln(σ 2) + E (ln ε2
t )] + ut + [ln(ε2

t ) − E (ln ε2
t )]

≡ μ + ut + et .

Thus, the ln(a2
t ) series is a Gaussian long-memory signal plus a non-Gaussian white

noise; see Breidt et al. (1998). Estimation of the LMSV model is complicated, but the
fractional difference parameter d can be estimated by using either a quasi-maximum
likelihood method or a regression method. Using the log series of squared daily returns
for companies in the S&P 500 index, Bollerslev and Jubinski (1999) and Ray and Tsay
(2000) found that the median estimate of d is about 0.38. For applications, Ray and
Tsay (2000) studied common long-memory components in daily stock volatilities of
groups of companies classified by various characteristics. They found that companies
in the same industrial or business sector tend to have more common long-memory
components (e.g., big US national banks and financial institutions).

4.15 ALTERNATIVE APPROACHES

In this section, we discuss two alternative methods to volatility modeling.

4.15.1 Use of High Frequency Data

French et al. (1987) consider an alternative approach for volatility estimation that
uses high frequency data to calculate volatility of low frequency returns. In recent
years, this approach has attracted substantial interest owing to the availability of high
frequency financial data; see Andersen et al. (2001a,b).

Suppose that we are interested in the monthly volatility of an asset for which
daily returns are available. Let rm

t be the monthly log return of the asset at month t .
Assume that there are n trading days in month t and the daily log returns of the asset
in the month are {rt ,i }n

i=1. Using properties of log returns, we have

rm
t =

n∑
i=1

rt ,i .

Assuming that the conditional variance and covariance exist, we have

Var(rm
t |Ft−1) =

n∑
i=1

Var(rt ,i |Ft−1) + 2
∑
i<j

Cov[(rt ,i , rt ,j )|Ft−1], (4.44)

where Ft−1 denotes the information available at month t − 1 (inclusive). The prior
equation can be simplified if additional assumptions are made. For example, if we
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assume that {rt ,i } is a white noise series, then

Var(rm
t |Ft−1) = nVar(rt ,1),

where Var(rt ,1) can be estimated from the daily returns {rt ,i }n
i=1 by

σ̂ 2 =
∑n

i=1(rt ,i − r t )
2

n − 1
,

where r t is the sample mean of the daily log returns in month t (i.e.,
r t = (

∑n
i=1 rt ,i )/n). The estimated monthly volatility is then

σ̂ 2
m = n

n − 1

n∑
i=1

(rt ,i − r t )
2. (4.45)

If {rt ,i } follows an MA(1) model, then

Var(rm
t |Ft−1) = nVar(rt ,1) + 2(n − 1)Cov(rt ,1, rt ,2),

which can be estimated by

σ̂ 2
m = n

n − 1

n∑
i=1

(rt ,i − r t )
2 + 2

n−1∑
i=1

(rt ,i − r t )(rt ,i+1 − r t ). (4.46)

The previous approach for volatility estimation is simple, but it encounters several
difficulties in practice. First, the model for daily returns {rt ,i } is unknown. This com-
plicates the estimation of covariances in Equation (4.44). Second, there are roughly
21 trading days in a month, resulting in a small sample size. The accuracy of the
estimates of variance and covariance in Equation (4.44) might be questionable. The
accuracy depends on the dynamic structure of {rt ,i } and their distribution. If the daily
log returns have high excess kurtosis and serial correlations, then the sample estimates
σ̂ 2

m in Equations (4.45) and (4.46) may not even be consistent; see Bai et al. (2004).
Further research is needed to make this approach valuable.

Example 4.4. Consider the volatility of monthly log returns of the S&P 500 index
from January 1980 to August 2010. The daily data are downloaded from Yahoo
Finance. We calculate the volatility by three methods. In the first method, we use daily
log returns and Equation (4.45) (i.e., assuming that the daily log returns form a white
noise series). The second method also uses daily returns but assumes an MA(1) model
(i.e., using Eq. (4.46)). The third method applies a GARCH(1, 1) model with Gaussian
innovations to the monthly log returns from February 1967 to August 2010. Here, the
monthly returns are obtained using the first daily closing index of each month. We
use a longer data span for monthly series to obtain a more accurate estimate of the
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volatility. The GARCH(1, 1) model used is

rm
t = 0.00535 + at , at = σt εt , εt ∼ N (0, 1),

σ 2
t = 9.326 × 10−5 + 0.1142a2

t−1 + 0.8486σ 2
t−1.

Model checking statistics show that the model is adequate. For instance, the
Ljung–Box statistics give Q(20) = 17.56(0.61) and Q(20) = 8.20(0.99), respec-
tively, for the standardized residuals and their squared series. Figure 4.20 shows the
time plots of the estimated monthly volatility of the three methods. They are in the
same scale. Clearly, the estimated volatilities based on daily returns are much higher
than those based on monthly returns and a GARCH(1, 1) model. All three methods
show that high volatility occurred in October 1987 and in the recent financial crisis.�

R Demonstration

> da=read.table("d-sp58010.txt", header=T)
> x=da[, c(1:3, 9)]
> dim(x)
[1] 7737 4

> source("vold2m.R") %% Compile the script
> m1=vold2m(x)
> names(m1)
[1] "volatility" "ndays"
> v1=m1$volatility
> cnt=m1$ndays
> cnt[1:5]
[1] 20 20 21 21 21

> m2=vold2m(x, ma=1) % Use MA(1) dependence
> names(m2)
[1] "volatility" "ndays"
> v2=m2$volatility

> da1=read.table("m-sp56710.txt", header=T)
> sp=log(da1[, 9])
> sp5=diff(sp)
> library(fGarch)
> m3=garchFit(~1+garch(1, 1), data=sp5, trace=F)
> summary(m3)
Title: GARCH Modelling
Call:
garchFit(formula=~1+garch(1, 1), data=sp5, trace=F)

Mean and Variance Equation: data ∼ 1+garch(1, 1)[data=sp5]
Conditional Distribution: norm



ALTERNATIVE APPROACHES 235

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

mu 5.347e-03 1.742e-03 3.069 0.002149 **
omega 9.326e-05 4.859e-05 1.919 0.054942 .
alpha1 1.142e-01 3.003e-02 3.804 0.000142 ***
beta1 8.486e-01 3.186e-02 26.634 < 2e-16 ***
---
> v3=volatility(m3)
> v3=v3[158:524]
> v1=ts(v1, frequency=12, start=c(1980, 1))
> v2=ts(v2, frequency=12, start=c(1980, 1))
> v3=ts(v3, frequency=12, start=c(1980, 1))
> max(v1, v2, v3)
[1] 0.2870294
> par(mfcol=c(3, 1))
> plot(v1, xlab=’year’, ylab=’vol’, type=’l’, ylim=c(0, .3))
> title(main=’(a) No correlations’)
> plot(v2, xlab=’year’, ylab=’vol’, type=’l’, ylim=c(0, .3))
> title(main=’(b) Lag-1 correlation’)
> plot(v3, xlab=’year’, ylab=’vol’, type=’l’, ylim=c(0, .3))
> title(main=’(c) GARCH(1, 1)’)

4.15.2 Use of Daily Open, High, Low, and Close Prices

For many assets, daily opening, high, low, and closing prices are available. Parkinson
(1980), Garman and Klass (1980), Rogers and Satchell (1991), and Yang and Zhang
(2000) showed that one can use such information to improve volatility estimation.
Figure 4.21 shows a time plot of price versus time for the t th trading day, assuming
that time is continuous. For an asset, define the following variables:

• Ct = the closing price of the t th trading day.
• Ot = the opening price of the t th trading day.
• f = fraction of the day (in interval [0,1]) that trading is closed.
• Ht = the highest price of the t th trading period.
• Lt = the lowest price of the t th trading period.
• Ft−1 = public information available at time t − 1.

The conventional variance (or volatility) is σ 2
t = E [(Ct − Ct−1)

2|Ft−1]. Garman
and Klass (1980) considered several estimates of σ 2

t assuming that the price follows a
simple diffusion model without drift; see Tsay (2010, Chapter 6) for more information
about stochastic diffusion models. The following are the estimators considered:

• σ̂ 2
0,t = (Ct − Ct−1)

2.
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Figure 4.21. Time plot of price over time: scale for price is arbitrary.

• σ̂ 2
1,t = (Ot − Ct−1)

2

2f
+ (Ct − Ot )

2

2(1 − f )
, 0 < f < 1.

• σ̂ 2
2,t = (Ht − Lt )

2

4 ln(2)
≈ 0.3607(Ht − Lt )

2.

• σ̂ 2
3,t = 0.17

(Ot − Ct−1)
2

f
+ 0.83

(Ht − Lt )
2

(1 − f )4 ln(2)
, 0 < f < 1.

• σ̂ 2
5,t = 0.5(Ht − Lt )

2 − [2 ln(2) − 1](Ct − Ot )
2, which is ≈ 0.5(Ht − Lt )

2 −
0.386(Ct − Ot )

2.

• σ̂ 2
6,t = 0.12

(Ot − Ct−1)
2

f
+ 0.88

σ̂ 2
5,t

1 − f
, 0 < f < 1.

A more precise, but complicated, estimator σ̂ 2
4,t was also considered. However, it is

close to σ̂ 2
5,t . Defining the efficiency factor of a volatility estimator as

Eff(σ̂ 2
i ,t ) = Var(σ̂ 2

0,t )

Var(σ̂ 2
i ,t )

,

Garman and Klass (1980) found that Eff(σ̂ 2
i ,t ) is approximately 2, 5.2, 6.2, 7.4, and

8.4 for i = 1, 2, 3, 5, and 6, respectively, for the simple diffusion model entertained.
Note that σ̂ 2

2,t was derived by Parkinson (1980) with f = 0.
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Turn to log returns. Define the following:

• ot = ln(Ot ) − ln(Ct−1), the normalized open.
• ut = ln(Ht ) − ln(Ot ), the normalized high.
• dt = ln(Lt ) − ln(Ot ), the normalized low.
• ct = ln(Ct ) − ln(Ot ), the normalized close.

Suppose that there are n days of data available and the volatility is constant over the
period. Yang and Zhang (2000) recommend the estimate

σ̂ 2
yz = σ̂ 2

o + k σ̂ 2
c + (1 − k)σ̂ 2

rs (4.47)

as a robust estimator of the volatility, where

σ̂ 2
o = 1

n − 1

n∑
t=1

(ot − o)2 with o = 1

n

n∑
t=1

ot ,

σ̂ 2
c = 1

n − 1

n∑
t=1

(ct − c)2 with c = 1

n

n∑
t=1

ct ,

σ̂ 2
rs = 1

n

n∑
t=1

[ut (ut − ct ) + dt (dt − ct )],

k = 0.34

1.34 + (n + 1)/(n − 1)
.

The estimate σ̂ 2
rs was proposed by Rogers and Satchell (1991), and the quantity k is

chosen to minimize the variance of the estimator of σ̂ 2
yz , which is a linear combination

of three estimates.
The quantity Ht − Lt is called the range of the price in the t th day. This estimator

has led to the use of range-based volatility estimates; see, for instance, Alizadeh et al.
(2002). In practice, stock prices are only observed at discrete time points. As such,
the observed daily high is likely lower than Ht and the observed daily low is likely
higher than Lt . Consequently, the observed daily price range tends to underestimate
the actual range and, hence, may lead to underestimation of volatility. This bias in
volatility estimation depends on the trading frequency and tick size of the stocks. For
intensively traded stocks, the bias should be negligible. For other stocks, further study
is needed to better understand the performance of range-based volatility estimation.

Example 4.5. Again, consider the daily values of the S&P 500 index from January
3, 1980, to August 31, 2010, for 7737 trading days. Unlike Example 4.4, we focus on
the daily volatility of the index in this example. Figure 4.22 provides a daily range
plot of the index for June, July, and August 2010. In the plot, each vertical bar denotes
a trading range of the index, a small left horizontal bar marks the open value of the
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Figure 4.22. Daily range plot for S&P 500 index from June 1 to August 31, 2010. A vertical

bar denotes the daily range whereas the left and right horizontal bars denote the open and

close values of the index.

index, and a small right horizontal bar shows the closing value of the index. Thus,
this range plot provides daily open, high, low, and close values of the index.

We consider three ways to estimate the daily volatility. The first approach applies
the Yang–Zhang method in Equation (4.47) with window size n = 63, which is
approximately the number of trading days in 3 months. The second approach also
uses the Yang–Zhang method, but with window size 32. The results of these two
approaches enable us to see the sensitivity of the volatility estimate with respect to
the choice of window size n . The third approach is to fit an ARMA–GARCH model
to the daily log returns. In this particular instance, the fitted model is

rt = 0.00055 + 0.0145rt−1 + 0.0111rt−2 + 0.0221rt−3 + 0.034rt−4 + at ,

at = σtεt , εt ∼ N (0, 1),

σ 2
t = 1.248 × 10−6 + 0.0756a2

t−1 + 0.9158σ 2
t−1,

where only the lag-4 AR coefficient is significant at the 5% level for the mean equation,
but all estimates in the volatility equation are highly significant. Model checking
indicates that, except for normality, the fitted model is adequate. For instance, we
have Q(10) = 8.76(0.55) and Q(20) = 23.15(0.28) for the standardized residual ãt =
at/σt and Q(10) = 3.65(0.96) and Q(20) = 8.52(0.99) for ã2

t , where the number
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Figure 4.23. Daily volatility for the S&P 500 index from January 3, 1980, to August 31, 2010:

(a) and (b) are based on the method of Yang and Zhang (2000) with window size 63 and 32,

respectively, whereas part (c) is from a Gaussian ARMA(4,0)–GARCH(1,1) model.

in parentheses denotes p value. Figure 4.23 shows the time plots of the volatilities
obtained by the three different approaches. The plots are in the same scale so that they
can be used in direct comparison. From the plots, the three volatility series exhibit
similar characteristics. It is clear that the GARCH volatility, estimated from daily log
returns only, is more variable than those obtained by the Yang and Zhang method. It
is also clear that a smaller window results in a more variable volatility series when
the method of Yang and Zhang (2000) is used. �

EXERCISES

To answer questions in this exercise, (a) use 5% significance level in tests, and (b)
use 10 lags of serial correlations for return series.

1. Consider the daily returns of the exchange trade fund (ETF) SPDR S&P 500 of
State Street Global Advisors from September 4, 2001, to September 30, 2011.
The tick symbol is SPY and there are 2535 observations. The simple returns
are available from CRSP and in the file d-spy-0111.txt. Transform the
simple returns to log returns.
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(a) Is the expected log return zero? Are there any serial correlations in the log
returns? Is there ARCH effect in the log returns?

(b) Fit a Gaussian ARMA–GARCH model for the log return series. Perform
model checking, obtain the QQ plot of the standardized residuals, and
write down the fitted model. [Hint: Try GARCH(2,1).]

(c) Build an ARMA–GARCH model with Student t innovations for the log
return series. Perform model checking and write down the fitted model.

2. Consider, again, the SPY log return series of Problem 1.

(a) Fit an ARMA–APACRH model with Gaussian innovations to the data.
Perform model checking and write down the model. You may ignore the
lag-1 ARCH parameter as it is not statistically significant.]

(b) Fit an ARMA–APARCH model with Student t innovations to the data.
Write down the fitted model and perform 1- to 5-step ahead predictions of
the series and its volatility.

3. Consider the monthly stock returns of the Coca-Cola Company (KO) from
January 1961 to September 2011. The simple returns are available from CRSP
and in the file m-ko-6111.txt. Transform the simple returns to log returns.

(a) Is the expected monthly log return zero? Is there any serial correlation in
the log returns? Is there any ARCH effect in the log returns?

(b) Build a Gaussian GARCH model for the log returns. Perform model check-
ing and write down the fitted model.

(c) Build a GARCH model with Student t innovations for the log returns.
Perform model checking, obtain the QQ plot of the standardized residuals,
and write down the fitted model. Also, obtain 1- to 5-step ahead volatility
predictions.

4. Consider again the monthly log returns of KO stock. Multiple the log returns
by 100. That is, use percentage log returns.

(a) Fit a TGARCH model to the series. Perform model checking and write
down the fitted model. Is the level effect different from zero?

(b) Fit an NGARCH model to the series. Perform model checking and write
down the fitted model.

5. Consider the daily stock returns of Procter & Gamble from September 1, 2001,
to September 30, 2011. The simple returns are available from CRSP and in
the file d-pg-0111.txt. Transform the simple returns to log returns.

(a) Is there any serial correlation in the log returns?

(b) Fit an ARMA model to the log returns to remove serial correlations. Write
down the fitted model.

(c) Let rt be the residuals of the ARMA model and xt = 100 × rt . Is there
ARCH effect in xt ?

(d) Fit an EGARCH model to xt . Perform model checking and write down
the fitted model.
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6. Use the quantmod package to obtain the daily prices of Apple stock from
January 2, 2007, to November 30, 2011.
(a) Consider the log prices. Use Yang and Zhang method with window sizes

63 and 32 to obtain the daily volatility of the stock.

(b) Use an ARMA–GARCH model to obtain the daily volatility of the stock.
Compare the three volatility series.
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5

APPLICATIONS OF VOLATILITY
MODELS

We consider some applications of the volatility models in this chapter. For simplicity,
we focus on GARCH(1,1) models with Gaussian innovations. The applications, of
course, can be extended to other GARCH models with different types of innovations.
An obvious advantage of GARCH models over the constant volatility model is that
the former allow for time-varying volatility and volatility cluster. Our first application
then is to consider GARCH volatility forecasts and their financial applications. The
volatility forecasts enable us to construct volatility term structure for an asset returns.
We demonstrate that the volatility estimates from a GARCH model can be used in
portfolio selection and in obtaining time-varying betas of an asset. We also show
that a fitted GARCH model can be used in pricing options. More specifically, in this
chapter, we use daily log returns to demonstrate the GARCH volatility term structure
and the GARCH applications in option pricing and hedging.

Furthermore, we show that GARCH models can be used to improve the modeling
and prediction of pure ARMA models. Using backtesting, we showed that incorporat-
ing a simple GARCH(1,1) model can produce more accurate forecasts of the change
in weekly US crude oil price. Finally, applications of GARCH models in risk man-
agement such as calculating value at risk and expected shortfall are discussed in a
later chapter.

An Introduction to Analysis of Financial Data with R, First Edition. Ruey S. Tsay.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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In the following text, we use the true parameters in our discussion. It is understood
that these parameters are replaced by their maximum likelihood estimates in applica-
tions. In this way, we do not consider the parameter uncertainty in this chapter. In
real applications, volatility is usually annualized. We use a simple procedure to obtain
annualized volatility. Let σt be the volatility of daily log returns, then the annual
volatility is

√
252σt . In general, if σt is the volatility obtained from an asset return

series that has h observations per year then the annualized volatility is
√

hσt . An
advantage of using annual volatility is that it simplifies the comparison of different
volatility forecasts.

5.1 GARCH VOLATILITY TERM STRUCTURE

Again, we express a log return series as rt = μt + at = μt + σtεt , where εt forms a
sequence of independent standard normal random variates, that is, εt ∼ N (0, 1), and
μt = E (rt |Ft−1). The equation for a GARCH(1,1) model is

σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1, (5.1)

where α1 + β1 < 1, α0 > 0, 0 ≤ α1, β1 < 1. As mentioned in Chapter 4, the uncondi-
tional (or long-term) variance of rt is σ 2 = α0

1−α1−β1
. Using this result, Equation (5.1)

can be rewritten as,

(σ 2
t − σ 2) = α1(a

2
t−1 − σ 2) + β1(σ

2
t−1 − σ 2). (5.2)

The GARCH(1,1) model thus quantifies the reactions to deviations of squared unex-
pected returns from the long-term variance. Also, as shown in Chapter 4, the one-step
ahead volatility prediction of a GARCH(1,1) model at the forecast origin t is

σ 2
t (1) = α0 + α1a2

t + β1σ
2
t ,

whereas the �-step ahead volatility forecast is

σ 2
t (�) = α0 + (α1 + β1)σ

2
t (� − 1), � = 2, . . . .

Again, using σ 2 = α0/(1 − α1 − β1), we can rewrite the above equation as

[σ 2
t (�) − σ 2] = (α1 + β1)[σ

2
t (� − 1) − σ 2].

By repeated substitution, we see that

[σ 2
t (�) − σ 2] = (α1 + β1)

�−1[σ 2
t (1) − σ 2].

Thus, under the condition α1 + β1 < 1, we have σ 2
t (�) → σ 2 as � → ∞. In other

words, the volatility series of a GARCH(1,1) model with α1 + β1 < 1 is mean
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reverting and the speed of mean reverting to the long-term variance can also be
measured by the half-life � = log(0.5)/ log(α1 + β1).

To demonstrate, we consider daily log returns of three US stocks from January 2,
2001 to December 31, 2010. The three stocks are Caterpillar (CAT), Cisco Systems
(CSCO), and General Electric (GE). Table 5.1 summarizes the estimation results of
fitting a GARCH(1,1) model with Gaussian innovations to three log return series.
Figure 5.1 shows the time plot of CAT returns and the fitted volatility series. Model
checking statistics show that, except for the normality assumption, the GARCH(1,1)
model fits the data well. Similarly in Chapter 4, the fitted GARCH models are highly
persistent, especially for the GE stock. The high persistence gives rise to large values

TABLE 5.1. Estimation results of Gaussian GARCH(1,1) models for daily log returns of three
US stocks

Parameters
Asset μ̂ × 103 α̂0 × 106 α̂1 β̂1 α̂1 + β̂1 Half-life

CAT 1.037 9.567 0.0531 0.9245 0.9776 30.60
CSCO 0.322 15.58 0.0823 0.8947 0.9770 29.79
GE 0.318 0.736 0.0507 0.9484 0.9991 769.82

The sample period is from January 2, 2001 to December 31, 2010 with 2515 observations.
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Figure 5.1. Time plots of (a) the daily log returns and (b) GARCH(1,1) volatility for Caterpillar

stock from January 2, 2001 to December 31, 2010.
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Figure 5.2. Out-of-sample volatility forecasts for daily log returns of CAT, CSCO, and GE

stocks. The upper and lower plots are for forecast origin December 31, 2010 and December

29, 2008, respectively. The solid and dashed lines are for CAT and CSCO stock, respectively.

The volatility is annualized.

of half-life. For both CAT and CSCO stocks, the half-life is approximately 30 trading
days. The model for GE returns is essentially an IGARCH(1,1) model so that the half-
life is high. It seems that, in this particular case, the financial crisis of 2007–2008
contributes significantly to the high persistence in stock volatility.

Figure 5.2 shows the time plots of volatility forecasts for the three stocks of
Table 5.1 at two different forecast origins, namely, December 31, 2010 and December
29, 2008. These forecasts are out-of-sample point predictions and are annualized. The
solid, dashed, and dot-dashed lines are for CAT, CSCO, and GE stock, respectively.
For both forecast origins, the volatility forecasts of GE stock are not mean revert-
ing. On the other hand, the volatility forecasts for CAT and CSCO stocks gradually
approach their long-term standard deviations.

5.1.1 Term Structure

Turn to volatility term structure. The log return of an asset h periods from time t is

rt ,h =
h∑

i=1

rt+i .
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From which, we have E (rt ,h |Ft ) = ∑h
i=1 E (rt+i |Ft ) and

Var(rt ,h |Ft ) =
h∑

i=1

Var(rt+i |Ft ) + 2
h−1∑
i=1

h∑
j=i+1

Cov[(rt+i , rt+j )|Ft ],

where, again, Ft denotes the information available at time t . Here the first term is
the summation of conditional variances, and the second term consists of conditional
autocovariances of rt . For daily log returns, empirical evidence suggests that the
autocovariances are typically close to zero. Indeed, the autocovariances are zero under
the efficient market hypothesis. Therefore, as a reasonable approximation, we employ

Var(rt ,h |Ft ) =
h∑

i=1

Var(rt+i |Ft ).

For GARCH models, the prior approximation shows that

σ 2
t ,h =

h∑
�=1

σ 2
t (�), (5.3)

where σ 2
t ,h denotes the conditional variance of the h-period log return rt ,h at the forecast

origin t . Consequently, we can easily compute the h-period log return volatility from
the volatility forecasts of a GARCH model.

For ease in comparing volatility forecasts for different frequencies of log returns,
we annualize the volatility. For daily returns, the annualized h-period volatility is

σt ,h ,a =
√

252

h
σt ,h ,

where the subscript “a” is used to signify that the volatility is annualized. Volatility
term structure is to study the behavior of σt ,h ,a over a range of h values.

To illustrate this, we consider the daily log returns of CSCO stock. We use out-of-
sample forecasts to compute σ 2

t (�) for h = 1, . . . , 40 and t from December 29, 2008
to December 31, 2010. For a given forecast origin to, we estimate the GARCH(1,1)
model in Table 5.1 and use the fitted model to compute 1-step to 40-step ahead
volatility forecasts. We then obtain the h-period volatility via Equation (5.3). Finally,
the resulting volatility is annualized. Figure 5.3 shows the volatility term structure for
CSCO stock from December 29, 2001 to December 31, 2010. The plot consists of
annualized volatility for h = 1, 5, 10, 15, 20, 25, 30, 35, and 40. That is, the range
of h is from 1 trading day to 2 months. The solid line of the plot is for h = 1. From
the plot, it is seen that the volatility surface appears to be flat when volatility jumps.
On the other hand, the volatility increases with h when the volatility is declining.
Figure 5.4 shows the volatility term structure for the CAT stock in the sample period
and obtained by the same procedure. Again, volatility surface shows some changes
when the volatility is declining.
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Figure 5.3. Volatility term structure for daily log returns of Cisco System stock from December

29, 2008 to December 31, 2010. The solid line is for 1-day volatility. The dashed lines are for

h = 5, 10, . . . , 35, and 40. The volatility is annualized, in percentages, and obtained from a

GARCH(1,1) model.

5.2 OPTION PRICING AND HEDGING

An important application of volatility is to price financial derivatives. See, for
instance, the well-known Black–Scholes option pricing formula, which assumes
constant volatility. Hull and White (1987) studied the pricing of options when
the volatility is stochastic. With the introduction of GARCH models to model
systematically asset volatility, one would expect the use of GARCH volatility in
option pricing and hedging (Engle and Rosenberg, 1995). Indeed, several authors
have studied the use of GARCH models in option pricing. Duan (1995) derived the
GARCH option pricing model. Amin and Ng (1993) and Hafner and Härdle (2000)
found that the GARCH prices of short-maturity out-of-the-money equity options are
closer to the observed market price than the Black–Scholes prices.

The basic model of the standard option pricing methods for an option on a single
stock is that the price Pt of the stock follows the geometric Brownian motion

dPt

Pt
= rdt + σdWt ,
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Figure 5.4. Volatility term structure for daily log returns of Caterpillar stock from December

29, 2008 to December 31, 2010. The solid line is for 1-day volatility. The dashed lines are for

h = 5, 10, . . . , 35, and 40. The volatility is annualized, in percentages, and obtained from a

GARCH(1,1) model.

where r is the risk free interest rate, σ is the volatility, and W (t) is the standard
Wiener process. This is a model under the risk neural world. (Hull, 2011; Tsay, 2010,
Chapter 6). Using Ito’s lemma, the log price of the stock then follows the model

d ln(Pt ) =
(

r − σ 2

2

)
dt + σdWt .

In practice, assume that both r and σ are known and the only uncertainty involved in
the model is the random noise dW (t). Thus, simulation can be used to evaluate the
stock price. The discrete time version of the model becomes

Pt = Pt−1 exp (r − 0.5σ 2 + σεt ), (5.4)

where εt is a sequence of independent standard normal random variates, that is, εt ∼
N (0, 1).

Denote the current time as zero and the current stock price as P0. Assume that
the strike price of the option is K and the time to expiration is T . We can simu-
late the terminal stock price PT by generating a sequence of independent standard
normal random variates {ε1, . . . , εT } and using Equation (5.4). In practice, PT is a
random quantity, but we can repeat the above generating procedure N times and treat
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the average of those PT values as the expected value of PT . That is, E (PT |Ft ) =∑N
i=1 P (i )

T /N , where the superscript (i ) is used to denote the terminal price of the i th
simulation.

Using the simulation results, the price of a European call option is then

C (P0) = e−rT E [max(PT − K , 0)] = e−rT
T∑

i=1

max
(

P (i )
T − K , 0

)
N

.

The price of an Asian call option, which depends on the arithmetic average of the
price path, is

C (P0) = e−rT
N∑

i=1

max

(∑T
t=1 P (i )

t /T − K , 0
)

N
.

For GARCH(1,1) models, one can extend the above simulation procedure by making
use of the volatility equation. More specifically, we have

Pt = Pt−1 exp (r − 0.5σ 2
t + σtεt ),

σ 2
t = α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1,

where, again, εt is a sequence of independent standard normal random variates.
Finally, the corresponding GARCH option deltas and gammas can be calculated

using finite difference approximations. For instance,

δ = [C (P0 + �) − C (P0 − �)]/(2�),

γ = [C (P0 + �) − 2C (P0) + C (P0 − �)]/�2.

In practice, to improve the accuracy of simulation, one may need a large number of
iterations in calculating δ and γ .

Strictly speaking, the above pricing formulas are based on perfect hedging, which
may not be possible under the stochastic volatility framework. However, Duan (1995)
showed that there is a local risk neural valuation relationship with the NGARCH
volatility model

rt = r − 0.5σ 2
t + λσt + σtεt ,

σ 2
t = α0 + α1σ

2
t−1(εt−1 − θ)2 + β1σ

2
t−1.

See Section 4.12. With estimated parameters, one can perform simulation using this
NGARCH(1,1) model in pricing options.
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5.3 TIME-VARYING CORRELATIONS AND BETAS

Another application of GARCH models is to obtain time-varying correlations between
asset returns. It is obvious that a multivariate GARCH model can study the time evolu-
tion of variances and covariances simultaneously (Tsay, 2010, Chapter 10). However,
in this section, we discuss a simple approach that uses directly the univariate GARCH
models of the previous chapter to study time-varying correlations. The basic idea sup-
porting the approach is as follows. Consider two asset returns xt and yt . Statistical
theory states that

Var(xt + yt ) = Var(xt ) + 2Cov(xt , yt ) + Var(yt ),

Var(xt − yt ) = Var(xt ) − 2Cov(xt , yt ) + Var(yt ).

Therefore, we have

Cov(xt , yt ) = Var(xt + yt ) − Var(xt − yt )

4
. (5.5)

This identity continues to hold for conditional covariance. Therefore, time-varying
covariances between asset returns xt and yt can be obtained by the volatilities of
xt + yt and xt − yt .

Let σx+y ,t , σx−y ,t , σx ,t , and σy ,t be the volatility of xt + yt , xt − yt , xt , and yt ,
respectively. Using the identity in Equation (5.5), the time-varying correlation between
the asset returns xt and yt can be obtained by

ρt = σ 2
x+y ,t − σ 2

x−y ,t

4σx ,tσy ,t
. (5.6)

To demonstrate this, we consider the daily log returns of CAT and CSCO stocks
from January 2, 2001 to December 31, 2010. The GARCH(1,1) models for the two
daily asset returns are given in Table 5.1. Furthermore, applying GARCH(1,1) models
with Gaussian innovations, we obtain the model

rt = 0.00143 + at , at = σtεt , εt ∼ N (0, 1)

σ 2
t = 2.188 × 10−5 + 0.070a2

t−1 + 0.916σ 2
t−1

for the sum of the two returns, and the model

rt = −0.00084 + at , at = σtεt , εt ∼ N (0, 1)

σ 2
t = 5.533 × 10−6 + 0.0179a2

t−1 + 0.9726σ 2
t−1

for the difference between the two returns. Except for the normality assumptions,
model checking statistics fail to reject the adequacy of these two GARCH(1,1) models.
Figure 5.5a shows the time plot of the time-varying correlations between CAT and
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Figure 5.5. Time-varying correlations between daily log returns of Caterpillar and Cisco

Systems stocks from January 2, 2001 to December 31, 2010: (a) based on univariate GARCH(1,1)

models and (b) based on exponentially weighted moving average with θ = 0.94.

CSCO stock returns. The correlations fluctuated substantially and were high in the
later part of 2008.

For comparison, we also consider the time-varying correlations obtained by the
exponentially weighted moving-average (EWMA) method. For a prespecified weight
θ , where 0 < θ < 1, and a sequence of data {x1, . . . , xn}, the EWMA of the sample is

x̂n+1 = xn + θxn−1 + θ2xn−2 + · · · + θn−1x1

1 + θ + θ2 + · · · + θn−1
.

This formula gives higher weights to observations closer to xn+1 and the weights
decay exponentially. This simple and intuitive method has been widely used in the
forecasting literature to obtain a point prediction for xn+1. Using 1 + θ + θ2 + · · · +
θn−1 = (1 − θn)/(1 − θ), we can rewrite the above formula as

x̂n+1 = (1 − θ)
∑n−1

i=0 θ i xn−i

1 − θn
.

For a large n , we see that

x̂n+1 = (1 − θ)

∞∑
i=0

θ i xn−i .
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In practice, this point prediction can be computed effectively because

x̂n+1 = (1 − θ)

∞∑
i=0

θ i xn−i

= (1 − θ)xn + (1 − θ)

∞∑
i=1

θ i xn−i

= (1 − θ)xn + θ(1 − θ)

∞∑
i=0

θ i xn−1−i

= (1 − θ)xn + θ x̂n .

In other words, with an initial value x̂1, the EWMA prediction x̂n+1 can be calculated
recursively. The first term of the prior recursive formula denotes the contribution of
the most recent observation to x̂n+1, whereas the second term shows the persistence
in the prediction. A larger θ means higher persistence and less weight for the most
recent data. A smaller θ implies higher weight for the recent data and less persistence.
In practice, the range of θ is approximately between 0.75 and 0.98. If necessary, θ can
be estimated by statistical methods. In fact, for volatility estimation, θ corresponds to
the β1 coefficient of an IGARCH(1,1) model when α0 is fixed at zero.

For the estimation of time-varying covariances of (xt , yt ), one can apply the
EWMA method as follows:

• Variance estimation: use the sample variance as the initial estimate then apply
the recursion. For instance, let σ 2

x ,1 be the sample variance of xt . Compute
σ 2

x ,t+1 = (1 − θ)x 2
t + θσ 2

x ,t for t = 1, 2, . . . , T .
• Covariance estimation: use the sample mean of the cross product xt yt as the

initial estimate then apply the recursion. That is, let σx ,y ,1 be the sample mean
of xt yt . Compute σx ,y ,t+1 = (1 − θ)xt yt + θσx ,y ,t for t = 1, 2, . . . , T , where T
is the sample size.

The time-varying correlations are ρt = σx ,y ,t/(σx ,tσy ,t ). Figure 5.5b shows the time
plot of the time-varying correlations between CAT and CSCO stocks obtained by the
EWMA method with θ = 0.94. The correlations show a similar pattern as that of the
GARCH approach.

In this demonstration, we use the sample variance as the starting value in applying
the EWMA method. Other initial values can also be used. For instance, one can use
the sample variance of the first 30 observations. As the weights decay exponentially,
the effect of the initial value is small when the sample size is large.

R Demonstration. Output edited.

> da=read.table("d-c2c-0110.txt",header=T) % Load data
> csco=log(da$CSCO+1)
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> cat=log(da$CAT+1)
> library(fGarch)
> m1=garchFit(∼1+garch(1,1),data=csco,trace=F)
> summary(m1)
Title: GARCH Modelling
Call: garchFit(formula=∼1+garch(1,1),data=csco,trace=F)

Mean and Variance Equation:
data ∼ 1 + garch(1, 1) [data = csco]
Conditional Distribution: norm

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu 3.224e-04 4.067e-04 0.793 0.428
omega 1.558e-05 3.941e-06 3.954 7.69e-05 ***
alpha1 8.230e-02 1.784e-02 4.612 3.98e-06 ***
beta1 8.947e-01 2.142e-02 41.767 < 2e-16 ***
---
Standardized Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 10943.10 0
Shapiro-Wilk Test R W 0.9417184 0
Ljung-Box Test R Q(10) 9.690227 0.4680781
Ljung-Box Test R Q(20) 22.97434 0.2900562
Ljung-Box Test R^2 Q(10) 1.949594 0.996712
Ljung-Box Test R^2 Q(20) 4.167677 0.999935

> m2=garchFit(∼1+garch(1,1),data=cat,trace=F)
> summary(m2)
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
mu 1.037e-03 3.713e-04 2.793 0.00522 **
omega 9.567e-06 3.385e-06 2.826 0.00471 **
alpha1 5.311e-02 1.134e-02 4.682 2.84e-06 ***
beta1 9.245e-01 1.787e-02 51.739 < 2e-16 ***
---
Standardized Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 2397.073 0
Shapiro-Wilk Test R W 0.9720346 0
Ljung-Box Test R Q(10) 11.99378 0.2854729
Ljung-Box Test R Q(20) 21.94146 0.3436954
Ljung-Box Test R^2 Q(10) 1.323397 0.9993882
Ljung-Box Test R^2 Q(20) 4.95693 0.9997407
LM Arch Test R TR^2 2.674523 0.9974382

> vcsco=volatility(m1)
> vcat=volatility(m2)
> xp=csco+cat
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> xm=csco-cat
> m3=garchFit(∼1+garch(1,1),data=xp,trace=F)
> summary(m3)
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
mu 1.430e-03 6.456e-04 2.215 0.02679 *
omega 2.188e-05 7.328e-06 2.986 0.00283 **
alpha1 7.002e-02 1.464e-02 4.782 1.74e-06 ***
beta1 9.158e-01 1.782e-02 51.404 < 2e-16 ***
---
Standardized Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 596.8557 0
Shapiro-Wilk Test R W 0.9828594 0
Ljung-Box Test R Q(10) 10.25332 0.4185566
Ljung-Box Test R Q(20) 21.87410 0.347381
Ljung-Box Test R^2 Q(10) 6.559973 0.76623
Ljung-Box Test R^2 Q(20) 11.86000 0.9208104
LM Arch Test R TR^2 9.634957 0.647951

> vxp=volatility(m3)
> m4=garchFit(∼1+garch(1,1),data=xm,trace=F)
> summary(m4)
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
mu -8.312e-04 4.629e-04 -1.795 0.0726 .
omega 5.533e-06 1.189e-06 4.652 3.29e-06 ***
alpha1 1.789e-02 2.860e-03 6.257 3.93e-10 ***
beta1 9.726e-01 4.222e-03 230.360 < 2e-16 ***
---
Standardized Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 11268.66 0
Shapiro-Wilk Test R W 0.9233508 0
Ljung-Box Test R Q(10) 8.862264 0.5452234
Ljung-Box Test R Q(20) 17.35761 0.6296453
Ljung-Box Test R^2 Q(10) 1.871286 0.9972348
Ljung-Box Test R^2 Q(20) 5.879934 0.9990502
LM Arch Test R TR^2 3.000402 0.9955412

> vxm=volatility(m4)
> CoV=(vxp^2-vxm^2)/4
> COR=CoV/(vcat*vcsco)
> source("EWMAvol.R")
> M1=EWMAvol(rtn)
> tdx=c(1:2515)/252+2001
> par(mfcol=c(2,1))
> cr2=M1[,3]/sqrt(M1[,1]*M1[,2])
> range(cr2,COR)
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[1] -0.3453691 0.9706971
> plot(tdx,COR,xlab=‘year’,ylab=‘cor’,ylim=c(-0.35,1),type=‘l’)
> title(main=‘(a) GARCH based’)
> plot(tdx,cr2,xlab=‘year’,ylab=‘cor’,ylim=c(-0.35,1),type=‘l’)
> title(main=‘(b) EWMA with theta = 0.94’)

5.3.1 Time-Varying Betas

One of the most common applications of a statistical model in finance is the capital
asset pricing model (CAPM). The CAPM model can be written as

rt = α + βrm ,t + et , t = 1, . . . , T , (5.7)

where rm ,t denotes the return of the market and rt is the asset return of interest. Here
we use the returns, not the excess returns, in the study. (Black, 1972). This simple
linear regression provides a method for estimating

• the stock sensitivity to the market risk, the β, factor;
• the mispricing of the stock relative to the market, α;
• the stock-specific return, et .

Roughly speaking, the stock-specific returns are considered to be diversifiable and,
hence, are not important. In statistical terms, if a portfolio consists of many stocks
then, by the law of large number, the average of stock-specific returns will tend to
zero. The beta, on the other hand, provides a measure of how the stock responds to
changes in the market. If β is not significantly different from zero then the market
has no significant impact on the stock. If β is significantly greater than one then the
stock responds aggressively to changes in the market. Thus, a stock with β < 1 is
regarded as less risky than the market and stocks with β > 1 are classified as high
risk investment. In practice, a positive α and small β are preferred if possible.

For the CAPM model in Equation (5.7), we have

β = Cov(rt , rm ,t )

Var(rm ,t )
.

The estimate of β thus depends on the sample and the choice of the market index rm ,t .
As a matter of fact, it is commonly believed that β is likely time-varying. Using the
method discussed in the previous section, the GARCH models can be used to model
the time-varying β. Specifically, Cov(rt , rm ,t ) can be obtained from the volatilities of
rt + rm ,t and rt − rm ,t via Equation (5.5).

To demonstrate this, we consider the daily log returns of the CAT stock from
January 2, 2001 to December 31, 2010. We use the daily log returns of the S&P 500
index as the market returns. The traditional CAPM model for the data is

rt = 0.00068 + 1.146rm ,t + et ,
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Figure 5.6. Time-varying betas for the daily log returns of Caterpillar stock from January 2,

2001 to December 31, 2010. The daily log returns of the S&P 500 index is used as the market

returns. The horizontal line denotes the constant beta at 1.146.

where the standard error of et is 0.015 and the adjusted R2 of the linear regression
is 51.69%. Figure 5.6 shows the time-varying β for the daily log returns of CAT
stock. The horizontal line denotes the constant β of the data with β̂ = 1.146. In this
particular case, there exists a big outlying β̂t at t = 1460. An examination of the
returns shows that the CAT stock dropped more than 14.52% on October 20, 2006,
which corresponds to t = 1459. Ignoring the big outlier, we see that the β varies
within a certain range and there is no evidence to support a constant β.

R Demonstration. Output edited.

> da=read.table("d-sp500-0110.txt")
> sp5=da[,1]
> da=read.table("d-c2c-0110.txt",header=T)
> cat=log(da$CAT+1)
>
> xp=cat+sp5
> xm=cat-sp5
> m1=garchFit(∼1+garch(1,1),data=xp,trace=F)
> summary(m1)
Title: GARCH Modelling
Call: garchFit(formula=∼1+garch(1,1),data=xp,trace=F)
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Mean and Variance Equation:
data ∼ 1 + garch(1, 1) [data = xp]

Conditional Distribution: norm
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
mu 1.393e-03 5.065e-04 2.750 0.005956 **
omega 1.402e-05 3.948e-06 3.551 0.000383 ***
alpha1 6.534e-02 9.868e-03 6.621 3.56e-11 ***
beta1 9.191e-01 1.254e-02 73.292 < 2e-16 ***
---
Standardized Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 539.8161 0
Shapiro-Wilk Test R W 0.9854247 2.197766e-15
Ljung-Box Test R Q(10) 8.708999 0.5599254
Ljung-Box Test R Q(20) 22.16945 0.3313869
Ljung-Box Test R^2 Q(10) 8.114903 0.6176144
Ljung-Box Test R^2 Q(20) 10.86366 0.9496819

> m2=garchFit(∼1+garch(1,1),data=xm,trace=F)
> summary(m2)
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
mu 8.527e-04 2.851e-04 2.991 0.002784 **
omega 3.562e-06 1.059e-06 3.363 0.000772 ***
alpha1 2.423e-02 5.045e-03 4.804 1.56e-06 ***
beta1 9.600e-01 8.561e-03 112.148 < 2e-16 ***
---
Standardized Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 11837.86 0
Shapiro-Wilk Test R W 0.9329678 0
Ljung-Box Test R Q(10) 21.67769 0.01683345
Ljung-Box Test R Q(20) 27.82026 0.1137230
Ljung-Box Test R^2 Q(10) 1.764147 0.997849
Ljung-Box Test R^2 Q(20) 8.406545 0.988818

> m3=garchFit(∼1+garch(1,1),data=sp5,trace=F)
> summary(m3)
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
mu 1.933e-04 1.762e-04 1.097 0.273
omega 1.233e-06 3.061e-07 4.028 5.63e-05 ***
alpha1 7.891e-02 9.468e-03 8.335 < 2e-16 ***
beta1 9.126e-01 9.848e-03 92.669 < 2e-16 ***
---
Standardized Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 199.5819 0
Shapiro-Wilk Test R W 0.9890158 5.49156e-13
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Ljung-Box Test R Q(10) 15.57277 0.1125331
Ljung-Box Test R Q(20) 28.50665 0.09793793
Ljung-Box Test R^2 Q(10) 22.30558 0.01362134
Ljung-Box Test R^2 Q(20) 24.89998 0.2052844

> vxp=volatility(m1)
> vxm=volatility(m2)
> vsp5=volatility(m3)
> beta=(vxp^2-vxm^2)/(4*vsp5^2)
> tdx=c(1:2515)/252+2001
> m4=lm(cat∼sp5)
> summary(m4)
Call: lm(formula = cat ∼ sp5)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0006688 0.0003041 2.199 0.0279 *
sp5 1.1457961 0.0220900 51.870 <2e-16 ***
---
Residual standard error: 0.01525 on 2513 degrees of freedom
Multiple R-squared: 0.5171, Adjusted R-squared: 0.5169
> plot(tdx,beta,xlab=‘year’,ylab=‘beta’,type=‘l’)
> abline(h=c(1.146))
> idx=c(1:2515)[beta==max(beta)] #Locate the outlier
> idx
[1] 1460

5.4 MINIMUM VARIANCE PORTFOLIOS

Another application of GARCH models is to estimate time-varying covariances of
asset returns for portfolio selection. We consider the mean–variance analysis of
Markovitz (1959) to portfolio analysis. For simplicity, we focus on the minimum
variance portfolios. Suppose that there are k risky assets in the portfolio and the stan-
dard error of the portfolio returns is taken as the risk measure. Let the k returns be
rt = (r1t , . . . , rkt )

′ and the covariance matrix of rt be Vt . Denote the weights of a port-
folio by wt = (w1t , . . . , wkt )

′. Typically, weights are in percentages of investments.
The return of the portfolio is then w′

t rt , and the variance of the portfolio return is
w′

t Vt wt .
The idea of minimum variance portfolio is to choose the weights wt that are the

solution to the following simple optimization problem:

min
w

w′Vt w such that
k∑

i=1

wi = 1.
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If we allow for negative weights, that is, short selling is allowed then the solution
to the prior optimization problem is easily available. The solution is

wt = V−1
t 1

1′V−1
t 1

, (5.8)

where 1 is the k -dimensional vector of ones. Here the denominator is simply the sum
of all elements of V−1

t , and the numerator is the vector consisting of the sums of each
row of V−1

t .
In practice, the weights would depend on the sample used to estimate Vt . To

illustrate this, we consider the daily log returns of five stocks, namely, Boeing, CAT,
IBM, Microsoft, and Procter and Gamble. We use sample covariance to estimate Vt .
Table 5.2a gives the weights for the minimum variance portfolio for three sampling
periods, whereas Table 5.2b shows the volatilities of each asset and the portfolio. As
expected, the portfolio has smaller volatilities.

Turn to application of GARCH models. We use Equation (5.5) to estimate the
covariance between two asset returns. These pairwise covariance estimates are then
used to construct an estimate of Vt for all assets in the portfolio. A possible drawback
of this approach to covariance matrix estimation is that the resulting covariance matrix
Vt may not be positive definite. However, for small k and large T , we expect that Vt
would be positive definite.

To demonstrate the application of GARCH models, we consider the daily log
returns of Abbott Laboratories (ABT), International Business Machines (IBM), and
Wal-Mart Stores (WMT) from January 2, 2001 to December 31, 2010. For a given t ,

TABLE 5.2. Minimum Variance Portfolios for Five Stocks: (a) Portfolio Weights for Three
Sampling Periods and (b) the Volatilities for the Assets and Portfolio

(a) Weights in (%)
Sample Period

Asset t ∈ [1 : 756] [757 : 1512] [1513 : 2515]

Abbott Laboratories 6.73 9.09 2.05
Caterpillar 14.43 3.77 −8.05
Inter. Business Machines 11.14 28.99 34.34
Microsoft 4.45 15.79 0.42
Proter & Gamble 63.24 42.35 71.24

(b) Volatilities (%)

Abbott Laboratories 2.37 1.35 2.27
Caterpillar 2.08 1.64 2.61
Inter. Business Machines 2.22 0.99 1.67
Microsoft 2.45 1.11 2.17
Proter & Gamble 1.41 0.89 1.38
Minimum variance portfolio 1.22 0.70 1.30

The sample period is from January 2, 2001 to December 31, 2010.
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Figure 5.7. Weights of the minimum variance portfolio for three US stock returns from

December 29, 2008 to December 31, 2010. Daily log returns are used. The solid, dashed,

and dotted lines are for Abbott Laboratories, International Business Machines, and Wal-Mart

Stores, respectively.

we estimate Vt by using GARCH(1,1) models for individual asset returns and their
sums and differences. We then obtain the minimum variance portfolio and use the
weights to compute the portfolio return for t + 1. The estimation process is repeated
for time t + 1 to compute the portfolio return at t + 2. In other words, we estimate
Vt , obtain the new weights, and rebalance the portfolio daily. This out-of-sample
procedure starts with t = 2011, corresponding to December 29, 2008, and lasts until
December 31, 2010. In this way, we consider the minimum variance portfolio for 2
years with 505 observations. The sample standard deviation of the portfolio returns in
the out-of-sample period is 0.0106, whereas those of the individual assets are 0.0132,
0.0146, and 0.0117, respectively, for ABT, IBM, and WMT. Thus, as expected, the
minimum variance portfolio reduces the risk. Figure 5.7 shows the time plots of
portfolio weights. As expected, the weights evolve over time. Figure 5.8 shows the
time plots of volatilities for each individual asset and the minimum variance portfolio.
The plot confirms that the volatility of the portfolio is lower.

R Demonstration. Output edited. A simple R script GMVP.R is used.

> library(fGarch)
> rtn=cbind(ba,cat,ibm,msft,pg)
> V1=cov(rtn[1:756,])
> V1inv=solve(V1)
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Figure 5.8. Volatility of log returns for stocks of Abbott Laboratories, International Business

Machines, Wal-Mart Stores, and the minimum variance portfolio from December 29, 2008 to

December 31, 2010. Daily log returns are used. The solid, dashed, dotted, and dot-dashed lines

are for ABT, IBM, WMT, and portfolio, respectively.

> One=matrix(1,5,1)
> Wgt=V1inv%*%One
> D=sum(Wgt*One)
> Wgt=Wgt/D
> print(Wgt)

[,1]
ba 0.06730200
cat 0.14432554
ibm 0.11141018
msft 0.04452799
pg 0.63243428
> print(1/sqrt(D))
[1] 0.01223689
> print(sqrt(diag(V1)))

ba cat ibm msft pg
0.02374290 0.02076534 0.02222969 0.02452022 0.01409959

> rtn=cbind(abt,ibm,wmt)
> source("GMVP.R")
> M2=GMVP(rtn,start=2011)
> names(M2)
[1] "weights" "minVariance" "variances" "returns" "det"
> wgt=M2$weights
> range(wgt)
[1] -0.588097 1.095440
> prtn=M2$returns
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> mean(prtn)
[1] 0.0001088868
> sqrt(var(prtn))
[1] 0.01026186
> Mean=apply(rtn[2012:2515,],2,mean)
> Mean

abt ibm wmt
-8.356484e-05 1.180094e-03 1.122753e-05
> v1=sqrt(apply(rtn[2012:2515,],2,var))
> print(v1)

abt ibm wmt
0.01315420 0.01460831 0.01171992
> minV=sqrt(M2$minVariance)
> Vol=sqrt(M2$variances)
> range(minV,Vol)
[1] 0.005651687 0.036997356
> tdx=c(1:505)/2515+2009
> plot(tdx,wgt[1,],xlab=‘year’,ylab=‘weights’,type=‘l’,ylim=c(-.75,1.5))
> lines(tdx,wgt[2,],lty=2)
> lines(tdx,wgt[3,],lty=3)
> plot(tdx,Vol[,1],xlab=‘year’,ylab=‘vol’,type=‘l’,ylim=c(0,0.04))
> lines(tdx,Vol[,2],lty=2)
> lines(tdx,Vol[,3],lty=3)
> lines(tdx,minV,lty=4)

5.5 PREDICTION

In this section, we apply the GARCH model to improve the modeling and forecasting
of a time series. The increase in oil prices of Summer 2008 and Spring 2011 had sub-
stantial impacts on the global economy. Predicting oil price is, therefore, an interesting
and important topic. Oil prices, however, are influenced by many factors and external
shocks, and are not easy to analyze. In this application, we employ the weekly crude
oil prices of the US from January 3, 1997 to September 24, 2010 with 717 obser-
vations. The prices are in dollars per barrel and are the spot price FOB (freight on
board) weighted by estimated import volume. The data are downloaded from the US
Energy Information Administration. Figure 5.9a shows the time plot of the oil prices.
The increase in oil prices during Summer 2008 is clearly seen. The prices also exhibit
an increasing trend so that the price series is nonstationary. Figure 5.9b shows the
changes in the weekly price. This differenced series shows volatility clusters, but it
has no obvious violation of being weakly stationary. We shall focus our analysis on
the change series. Our analysis demonstrates that a pure ARMA model for the price
change is not adequate because, among other reasons, ARMA models cannot handle
volatility clusters. On the other hand, an ARMA-GARCH model can adequately handle
the complexity of the data and produce improvement in out-of-sample prediction.

We treat our analysis as a case study for the application of GARCH models.
As such, sufficient details are provided so that readers can gain insight into using
GARCH models to improve time series analysis. Denote the price change series by
Ct . Figure 5.10 gives the sample ACF and PACF of the Ct series. These correlations
confirm the weak stationarity of Ct . They also show that there exists certain periodic
behavior in the crude oil prices. The ACF and PACF have significant values at lags
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Figure 5.9. Weekly US crude oil prices, dollars per barrel, from January 3, 1997 to September

24, 2010: (a) the price series and (b) the changes in price. Source: The data are obtained from

US Energy Information Administration.

5, 10, 20, and 25. We regard this periodic behavior as a weekly pattern because there
are five working days in a week. Consequently, we employ a seasonal model for Ct .

Focusing on the PACF of Ct in Figure 5.10b, we see that, except for the seasonal
lags, PACFs are significant mainly at lags 1 and 3. This implies that an AR(3) would
be sufficient for the regular component of the change series. Turn to seasonal pattern.
The ACF and PACF at the seasonal lags are not large, even though they are outside
the asymptotic two standard-error limits. Therefore, it suffices to start with a lower
order seasonal model. Consequently, we specify an ARMA(3, 0)(2, 0)5 model for Ct ,
where the subscript 5 signifies the periodicity. The fitted model is

(1 − 0.319B + 0.069B2 − 0.107B3)(1 − 0.081B5 − 0.118B10)Ct = at , σ 2
a = 3.63.

(5.9)

Figure 5.11 shows the model checking statistics for the model in Equation (5.9).
The model appears to be reasonable except the higher volatilities from 2008 to 2010.
Some of the standardized residuals have magnitudes around 6, which are rather high
compared with standard normal distribution. Further improvement is needed and we
turn to GARCH modeling.

As the fGarch package does not specifically handle seasonal mean equations,
we decide to remove the weak seasonality from the change series. To this end, we fit
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Figure 5.10. Sample ACF and PACF of the change series of weekly US crude oil prices from

January 3, 1997 to September 24, 2010: (a) ACF and (b) PACF.

a pure seasonal model to Ct and obtain

(1 − 0.0983B5 − 0.1152B10)Ct = bt .

This model is not adequate, but it provides a simple filter that can be used to
remove seasonality from Ct . In fact, for this particular instance, the residual series

C ∗
t = Ct − 0.0983Ct−5 − 0.1152Ct−10, t = 11, 12, . . . , 716.

has no significant serial correlations at the seasonal lags. Figure 5.12 shows the sample
ACF and PACF of the C ∗

t series. Except for lag 25, there are no significant correlations
at the seasonal lags.

With the removal of seasonal component, we apply an AR(3)-GARCH(1,1) model
to the adjusted series C ∗

t of the price change. The fitted model is

C ∗
t = 0.323C ∗

t− − 0.092C ∗
t−2 + 0.040C ∗

t−3 + at , at = σtεt , εt ∼ N (0, 1)

σ 2
t = 0.0168 + 0.0904a2

t−1 + 0.910σ 2
t−1. (5.10)

Except for the AR(3) coefficient, all parameter estimates are statistically signifi-
cant at the 5% level. Figure 5.13 shows the C ∗

t series with estimated volatility and the
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Figure 5.11. Model checking statistics of the seasonal model in Equation (5.9) for the change

series of US weekly crude oil price: (a) standardized residuals, (b) ACF of the standardized

residuals, and (c) p values of the Ljung-Box statistics.

QQ-plot for the standardized residuals. The nonnormality of standardized residuals is
clearly seen.

To handle nonnormality, we entertain Student-t innovations and obtain the model

C ∗
t = 0.325C ∗

t− − 0.065C ∗
t−2 + 0.056C ∗

t−3 + at , at = σtεt , εt ∼ t6.76

σ 2
t = 0.0111 + 0.1197a2

t−1 + 0.8918σ 2
t−1. (5.11)

The AR(2) and AR(3) coefficients are insignificant. Figure 5.14a shows the QQ-
plot of the standardized residuals. The Student-t distribution still encounters some
difficulties as the plot shows some deviation from the straight line. Finally, we entertain
skew Student-t innovations and obtain the model

C ∗
t = 0.295C ∗

t− + at , at = σtεt , εt ∼ t6.47,0.862

σ 2
t = 0.0113 + 0.1216a2

t−1 + 0.8926σ 2
t−1. (5.12)
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Figure 5.12. Sample ACF and PACF of seasonally adjusted data for the price changes of the

US weekly crude oil price. The adjustment is to remove the seasonal component via a seasonal

AR(2) model with periodicity 5.

All parameter estimates, but the constant of the volatility equation, are highly
significant. Figure 5.14b shows the QQ-plot of the standardized residuals of the model
in Equation (5.12). Except for a couple of outlying residuals, the plot exhibits a straight
line. Thus, the innovational distribution seems reasonable. The Ljung–Box statistics
of the standardized residuals and their squared series also fail to reject the fitted model.
We have Q(10) = 17.27(0.07) and Q(20) = 24.93(0.20) for the standardized residuals,
where the number in parentheses denotes p-value. For the squared residuals, we have
Q(10) = 4.37(0.93) and Q(20) = 10.73(0.95). The model in Equation (5.12) seems
adequate. Figure 5.15 shows the standardized residuals and time plots of C ∗

t with
fitted volatilities. The residual plot confirms the existence of a couple of outliers. On
the basis of the fitted model, the t-ratio for the skewness is t = (0.862 − 1)/0.048 =
−2.875, confirming that the innovational distribution is skewed to the left.

In terms of in-sample fitting, our analysis shows that the AR(1)-GARCH(1,1)
model with skew Student-t innovations in Equation (5.12) fares well compared with
the pure time series model Equation (5.9). For out-of-sample comparison, we use
backtesting with the seasonally adjusted data. Here, for pure time series model, we
use an AR(3) model. With starting point t = 650, we reserve 56 data points for
forecasting comparison. The AR(3) model has mean square of forecast errors 2.368
and 2.558, respectively, for one-step and two-step ahead predictions. For the AR(1)-
GARCH(1,1) model in Equation (5.12), the corresponding errors are 2.270 and 2.436,
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Figure 5.13. Time plots for an AR(3)-GARCH(1,1) model fitted to the seasonally adjusted

series of changes in US weekly crude oil price: (a) adjusted series with volatility and (b) normal

probability plot of standardized residuals.

respectively. Therefore, our analysis shows that using GARCH models also improved
the out-of-sample prediction.

R Demonstration. Output edited.

> library(fGarch)
> da=read.table("w-petroprice.txt",header=T)
> price=ts(pet,frequency=52,start=c(1997,1))
> dp=ts(diff(price),frequency=52,start=c(1997,2))
> par(mfcol=c(2,1))
> plot(price,xlab=‘year’,ylab=‘price’)
> plot(dp,xlab=‘year’,ylab=‘changes’)
> cprice=diff(price)
> m2=arima(cprice,order=c(3,0,0),seasonal=list(order=c(2,0,0),period=5))
> m2=arima(cprice,order=c(3,0,0),seasonal=list(order=c(2,0,0),period=5),

include.mean=F)
> m2
arima(x=cprice,order=c(3,0,0),seasonal=list(order=c(2,0,0),period=5),

include.mean = F)
Coefficients:

ar1 ar2 ar3 sar1 sar2
0.3191 -0.0689 0.1075 0.0817 0.1181

s.e. 0.0372 0.0397 0.0375 0.0377 0.0376
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Figure 5.14. Quantile-to-quantile plots for the seasonally adjusted series of changes in the

weekly US crude oil price: (a) an AR(3)-GARCH(1,1) model with Student-t innovations, and (b)

an AR(1)-GARCH(1,1) model with skew Student-t innovations.
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sigma^2 estimated as 3.634: log likelihood = -1478.02, aic = 2968.04
> length(cprice)
[1] 716
> m2=arima(cprice,seasonal=list(order=c(2,0,0),period=5),include.mean=F)
> m2
arima(x=cprice,seasonal=list(order=c(2,0,0),period=5),include.mean=F)
Coefficients:

sar1 sar2
0.0983 0.1152

s.e. 0.0371 0.0372
> adjcp=cprice[11:716]-0.0983*cprice[6:711]-0.1152*cprice[1:706]
> acf(adjcp)
> pacf(adjcp)
>
> m3=garchFit(∼arma(3,0)+garch(1,1),data=adjcp,trace=F,include.mean=F)
> summary(m3)
Title: GARCH Modelling
Call:
garchFit(formula=∼arma(3,0)+garch(1,1),data=adjcp,include.mean=F,

trace = F)
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
ar1 0.323491 0.040309 8.025 1.11e-15 ***
ar2 -0.092109 0.041690 -2.209 0.0271 *
ar3 0.040485 0.040117 1.009 0.3129
omega 0.016752 0.008171 2.050 0.0403 *
alpha1 0.090404 0.015674 5.768 8.04e-09 ***
beta1 0.910224 0.014837 61.348 < 2e-16 ***
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 15.30411 0.1213615
Ljung-Box Test R Q(20) 22.75042 0.3012149
Ljung-Box Test R^2 Q(10) 3.155763 0.977517
Ljung-Box Test R^2 Q(20) 9.651636 0.9740579

> plot(m3)
> m4=garchFit(∼arma(3,0)+garch(1,1),data=adjcp,trace=F,

include.mean=F,cond.dist="std")
> summary(m4)
Call:
garchFit(formula=∼arma(3,0)+garch(1,1),data=adjcp,
cond.dist="std",include.mean = F, trace = F)

Conditional Distribution: std
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
ar1 0.325394 0.038778 8.391 < 2e-16 ***
ar2 -0.065107 0.040791 -1.596 0.110
ar3 0.056019 0.039464 1.420 0.156
omega 0.011176 0.008849 1.263 0.207
alpha1 0.119702 0.023879 5.013 5.36e-07 ***
beta1 0.891777 0.019161 46.540 < 2e-16 ***
shape 6.761277 1.582183 4.273 1.93e-05 ***
---
Standardised Residuals Tests:
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Statistic p-Value
Ljung-Box Test R Q(10) 14.96374 0.1333895
Ljung-Box Test R Q(20) 22.95292 0.291112
Ljung-Box Test R^2 Q(10) 4.517846 0.920978
Ljung-Box Test R^2 Q(20) 10.55414 0.9569761

> plot(m4)
> m5=garchFit(∼arma(1,0)+garch(1,1),data=adjcp,trace=F,

include.mean=F,cond.dist="sstd")
> summary(m5)
Call: garchFit(formula=∼arma(1,0)+garch(1,1),data=adjcp,
cond.dist="sstd",include.mean = F, trace = F)

Conditional Distribution: sstd
Error Analysis:

Estimate Std. Error t value Pr(>|t|)
ar1 0.294917 0.036755 8.024 1.11e-15 ***
omega 0.011334 0.009021 1.256 0.209
alpha1 0.121625 0.024040 5.059 4.21e-07 ***
beta1 0.892568 0.018457 48.358 < 2e-16 ***
skew 0.861831 0.047754 18.047 < 2e-16 ***
shape 6.470892 1.532304 4.223 2.41e-05 ***
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 17.27285 0.0685404
Ljung-Box Test R Q(20) 24.92514 0.2043099
Ljung-Box Test R^2 Q(10) 4.370475 0.9290906
Ljung-Box Test R^2 Q(20) 10.72815 0.95297

> plot(m5)
% Backtesting
> M3=arima(adjcp,order=c(3,0,0),include.mean=F)
> source("backtest.R")
> M3F=backtest(M3,adjcp,650,2,inc.mean=F)
[1] "RMSE of out-of-sample forecasts"
[1] 2.368055 2.557732
> source("backtestGarch.R")
> M4F=backtestGarch(adjcp,650,2,inc.mean=F,cdist="sstd")
[1] "RMSE of out-of-sample forecasts"
[1] 2.270438 2.435757

EXERCISES

1. Consider the weekly world crude oil prices from January 3, 1997 to
September 24, 2010. The data are available from the US Energy Information
Administration and in the file w-petroprice.txt. Focus on the change
series of the price.
• Build a pure ARMA model for the change series of the world oil prices.
• Is there any seasonality in the price change series? If yes, perform simple

seasonal adjustment by removing seasonal impact.
• Build a pure ARMA model for the seasonally adjusted series of price change.
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• Build an ARMA-GARCH model for the seasonally adjusted series of price
change.

• Compare the models with and without GARCH components using backtest-
ing on the last 56 data points.

2. Consider the daily log returns of the Abbott Laboratories stock from January
2, 2001 to December 31, 2010. The simple return of the stock is given in d-
a2a-0110.txt. Employ a GARCH(1,1) model with Gaussian innovations
to obtain the volatility term structure from t = 2011 to t = 2515 for h =
1, 5, 10, 20, 25, 30, 35, and 40, where h denotes the number of trading
days.

3. Use the S&P 500 index to represent the US Market. Obtain the time-varying
betas for the Abbott Laboratories stock. The sample period is from January
2, 2001 to December 31, 2010. The data are available from CRSP or Yahoo
Finance, or the file d-abtsp-0110.txt.

4. Suppose that a portfolio consists of three US stocks, namely, Alcoa, American
Express, and Abbott Laboratories. The daily simple returns are available from
the file d-a2a-0110.txt. Use GARCH models to obtain the conditional
covariance matrices of the stocks for the period from December 29, 2008
to December 31, 2010. Obtain the weights and the resulting volatility of the
minimum variance portfolio for the period. Plot the weights and the volatilities
similar to those in Figures 5.7 and 5.8.

5. Consider the daily returns of Apple stock from January 2, 2001 to December
31, 2010. The data are available from the file d-a2a-0110.txt. Build
a Gaussian GARCH(1,1) model for the daily log returns. Assume that the
risk free interest rate is 1% per annum and the current price of the stock
is $350. Use simulation to compute the prices of a European call and an
Asian call if the strike price is $355 and the time to expiration is 10 trading
days.
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6

HIGH FREQUENCY FINANCIAL
DATA

High frequency data in finance typically denote observations taken daily or at a finer
time scale. These data become available primarily because of advances in information
technology and the trend of moving toward electronic trading. They have attracted
much attention in recent years because the data are important in empirical study
of market microstructure and high frequency trading. Extreme events such as the
Flash Crash of May 6, 2010 highlight the need for a deeper understanding of market
operation in real time. As a matter of fact, financial markets have witnessed ever
increasing interest in direct market access (DMA) in recent years.

The ultimate high frequency data in finance are the transaction-by-transaction
or tick-by-tick data in security markets. Here, time is often measured in seconds or
fractions of a second. The Trades and Quotes (TAQ) database of the New York Stock
Exchange (NYSE) contains all quotes and transactions of equities reported on the
Consolidated Tape, which includes transactions on the NYSE, AMEX, NASDAQ,
and the regional exchanges. For options data, see the Web site of Chicago Board
Options Exchange (CBOE). Transactions data for many other securities and markets,
both domestic and foreign, are continuously collected and processed. Wood (2000)
provides some historical perspective of high frequency financial study.

An Introduction to Analysis of Financial Data with R, First Edition. Ruey S. Tsay.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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High frequency financial data are important in studying a variety of issues related
to the trading process and market microstructure. They can be used to compare the
efficiency of different trading systems in price discovery (e.g., the open out-cry system
of the NYSE and the computer trading system of NASDAQ). They can also be used
to study the dynamics of bid and ask quotes of a particular stock (Hasbrouck, 1999;
Zhang et al., 2008). In an order-driven stock market (e.g., the Taiwan Stock Exchange),
high frequency data can be used to study the order dynamics and, more interesting, to
investigate the question of “who provides the market liquidity.” Cho et al. (2003) use
intraday 5-min returns of more than 340 stocks traded on the Taiwan Stock Exchange
to study the impact of daily stock price limits and find significant evidence of magnet
effects toward the price ceiling. High frequency financial data also play an important
role in algorithmic trading and DMA. They can be used to design trading strategies
and monitor inventory and risk. See Johnson (2010) and Hasbrouck (2007) for further
information.

However, high frequency data have some unique characteristics that do not appear
in lower frequencies. Analysis of these data thus introduces new challenges to financial
economists and statisticians. In this chapter, we study some of the special character-
istics, consider methods for analyzing high frequency data, and discuss implications
of the results obtained. In particular, we discuss nonsynchronous trading, bid–ask
spread, diurnal pattern of high frequency data, movements of trading prices, and
trading intensity. We also introduce some algorithmic trading.

6.1 NONSYNCHRONOUS TRADING

We begin with nonsynchronous trading. Stock trading such as those on the NYSE do
not occur in a synchronous manner; different stocks have different trading frequencies,
and for a single stock, the trading intensity varies from time to time. Yet, we often
analyze a return series in a fixed time interval such as daily, weekly, or monthly. For
daily series, price of a stock is its closing price, which is the last transaction price of
the stock in a trading day. The actual time of the last transaction of the stock varies
from day to day. As such, we incorrectly assume daily returns as an equally spaced
time series with a 24-h interval. It turns out that such an assumption can lead to
erroneous conclusions about the predictability of stock returns even if the true return
series are serially independent.

For daily stock returns, nonsynchronous trading can introduce (i) lag-1 cross-
correlation between stock returns, (ii) lag-1 serial correlation in a portfolio return,
and (iii) negative serial correlations of the return series of a single stock in some
situations. Consider stocks A and B. Assume that the two stocks are independent and
stock A is traded more frequently than stock B. For special news affecting the market,
which arrives near the closing hour on one day, stock A is more likely than B to show
the effect of the news on the same day simply because A is traded more frequently.
The effect of the news on B will eventually appear, but it may be delayed until the
following trading day. If this situation indeed happens, return of stock A appears
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to lead that of stock B. Consequently, the return series may show a significant lag-
1 cross-correlation from A to B even though the two stocks are independent. For
a portfolio that holds stocks A and B, the prior cross-correlation would become a
significant lag-1 serial correlation.

In a more complicated manner, nonsynchronous trading can also induce erroneous
negative serial correlations for a single stock. There are several models available in
the literature to study this phenomenon; see Campbell et al. (1997) and the refer-
ences therein. Here, we adopt a simplified version of the model proposed in Lo and
MacKinlay (1990). Let rt be the continuously compounded return of a security at
the time index t . For simplicity, assume that {rt } is a sequence of independent and
identically distributed random variables with mean E (rt ) = μ and variance Var(rt ) =
σ 2. For each time period, the probability that the security is not traded is π, which
is time invariant and independent of rt . Let ro

t be the observed return. When there is
no trade at time index t , we have ro

t = 0 because there is no information available.
Yet when there is a trade at time index t , we define ro

t as the cumulative return from
the previous trade (i.e., ro

t = rt + rt−1 + · · · + rt−kt
, where kt is the largest nonneg-

ative integer such that no trade occurred in the periods t − kt , t − kt + 1, . . . , t − 1).
Mathematically, the relationship between rt and ro

t is

ro
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 with probability π

rt with probability (1 − π)2

rt + rt−1 with probability (1 − π)2π

rt + rt−1 + rt−2 with probability (1 − π)2π2

...
...

k∑
i=0

rt−i with probability (1 − π)2πk

...
...

(6.1)

These probabilities are easy to understand. For example, ro
t = rt if and only if there

are trades at both t and t − 1; ro
t = rt + rt−1 if and only if there are trades at t

and t − 2, but no trade at t − 1; ro
t = rt + rt−1 + rt−2 if and only if there are trades

at t and t − 3, but no trades at t − 1 and t − 2; and so on. As expected, the total
probability is 1 given by

π + (1 − π)2[1 + π + π2 + · · ·] = π + (1 − π)2 1

1 − π
= π + 1 − π = 1.

We are ready to consider the moment equations of the observed return series {ro
t }.

First, the expectation of ro
t is

E (ro
t ) = (1 − π)2E (rt ) + (1 − π)2πE (rt + rt−1) + · · ·

= (1 − π)2μ + (1 − π)2π2μ + (1 − π)2π23μ + · · ·
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= (1 − π)2μ[1 + 2π + 3π2 + 4π3 + · · ·]

= (1 − π)2μ
1

(1 − π)2
= μ. (6.2)

In the prior derivation, we use the result 1 + 2π + 3π2 + 4π3 + · · · = 1/(1 − π)2,
which can be derived by taking the derivative of the geometric series g(π) = 1 +
π + π2 + · · · = 1/(1 − π). Next, for the variance of ro

t , we use Var(ro
t ) = E [(ro

t )2] −
[E (ro

t )]2 and

E (ro
t )2 = (1 − π)2E [(rt )

2] + (1 − π)2πE [(rt + rt−1)
2] + · · ·

= (1 − π)2[(σ 2 + μ2) + π(2σ 2 + 4μ2) + π2(3σ 2 + 9μ2) + · · ·] (6.3)

= (1 − π)2{σ 2[1 + 2π + 3π2 + · · ·] + μ2[1 + 4π + 9π2 + · · ·]} (6.4)

= σ 2 + μ2
[

2

1 − π
− 1

]
. (6.5)

In Equation (6.3), we use

E

(
k∑

i=0

rt−i

)2

= Var

(
k∑

i=0

rt−i

)
+

[
E

(
k∑

i=0

rt−i

)]2

= (k + 1)σ 2 + [(k + 1)μ]2

under the serial independence assumption of rt . Using techniques similar to that of
Equation (6.2), we can show that the first term of Equation (6.4) reduces to σ 2. For
the second term of Equation (6.4), we use the identity

1 + 4π + 9π2 + 16π3 + · · · = 2

(1 − π)3
− 1

(1 − π)2
,

which can be obtained as follows. Let

H = 1 + 4π + 9π2 + 16π3 + · · · and G = 1 + 3π + 5π2 + 7π3 + · · · .

Then (1 − π)H = G and

(1 − π)G = 1 + 2π + 2π2 + 2π3 + · · ·

= 2(1 + π + π2 + · · ·) − 1 = 2

(1 − π)
− 1.

Consequently, from Equations (6.2) and (6.5), we have

Var(ro
t ) = σ 2 + μ2[

2

1 − π
− 1] − μ2 = σ 2 + 2πμ2

1 − π
. (6.6)
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Consider next the lag-1 autocovariance of {ro
t }. Here, we use Cov(ro

t , ro
t−1) =

E (ro
t ro

t−1) − E (r0
t )E (ro

t−1) = E (ro
t ro

t−1) − μ2. The question then reduces to finding
E (ro

t ro
t−1). Notice that ro

t ro
t−1 is 0 if there is no trade at t , no trade at t − 1, or no

trade at both t and t − 1. Therefore, we have

ro
t ro

t−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 with probability 2π − π2

rt rt−1 with probability (1 − π)3

rt (rt−1 + rt−2) with probability (1 − π)3π

rt (rt−1 + rt−2 + rt−3) with probability (1 − π)3π2

...
...

rt

(∑k
i=1 rt−i

)
with probability (1 − π)3πk−1

...
...

(6.7)

Again the total probability is unity. To understand the prior result, notice that ro
t ro

t−1 =
rt rt−1 if and only if there are three consecutive trades at t − 2, t − 1, and t . Using
Equation (6.7) and the fact that E (rt rt−j ) = E (rt )E (rt−j ) = μ2 for j > 0, we have

E (ro
t ro

t−1) = (1 − π)3
{

E (rt rt−1)

+ πE [rt (rt−1 + rt−2)] + π2E

[
rt

(
3∑

i=1

rt−i

)]
+ · · ·

}

= (1 − π)3μ2(1 + 2π + 3π2 + · · ·) = (1 − π)μ2.

The lag-1 autocovariance of {ro
t } is then

Cov(ro
t , ro

t−1) = −πμ2. (6.8)

Provided that μ is not 0, the nonsynchronous trading induces a negative lag-1 auto-
correlation in ro

t given by

ρ1(r
o
t ) = −(1 − π)πμ2

(1 − π)σ 2 + 2πμ2
.

In general, we can extend the prior result and show that

Cov(ro
t , ro

t−j ) = −μ2πj , j ≥ 1.

The magnitude of the lag-1 ACF (autocorrelation function) depends on the choices of
μ, π, and σ and can be substantial. Thus, when μ �= 0, the nonsynchronous trading
induces negative autocorrelations in an observed security return series.
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The previous discussion can be generalized to the return series of a portfolio that
consists of N securities Campbell et al. (1997, Chapter 3). In the time series literature,
effects of nonsynchronous trading on the return of a single security are equivalent to
those of random temporal aggregation on a stationary time series, with the trading
probability π governing the mechanism of aggregation (Tsay and Yeh, 2011).

6.2 BID–ASK SPREAD OF TRADING PRICES

In some stock exchanges (e.g., NYSE), market makers play an important role in
facilitating trades. They provide market liquidity by standing ready to buy or sell
whenever the public wishes to sell or buy. By market liquidity, we mean the ability
to buy or sell significant quantities of a security quickly, anonymously, and with little
price impact. In return for providing liquidity, market makers are granted monopoly
rights by the exchange to post different prices for purchases and sales of a security.
They buy at the bid price Pb and sell at a higher ask price Pa. (For the public, Pb is the
sale price and Pa is the purchase price.) The difference Pa − Pb is called the bid–ask
spread , which is the primary source of compensation for market makers. Typically,
the bid–ask spread is small—namely, 1 or 2 cents.

The existence of a bid–ask spread, although small in magnitude, has several
important consequences in time series properties of asset returns. We briefly discuss
the bid–ask bounce—namely, the bid–ask spread introduces negative lag-1 serial
correlation in an asset return. Consider the simple model of Roll (1984). The observed
market price Pt of an asset is assumed to satisfy

Pt = P∗
t + It

S

2
, (6.9)

where S = Pa − Pb is the bid–ask spread, P∗
t is the time-t fundamental value of the

asset in a frictionless market, and {It } is a sequence of independent binary random
variables with equal probabilities (i.e., It = 1 with probability 0.5 and It = −1 with
probability 0.5). The It can be interpreted as an order-type indicator, with 1 signifying
buyer-initiated transaction and −1 seller-initiated transaction. Alternatively, the model
can be written as

Pt = P∗
t +

{
+S /2 with probability 0.5,

−S /2 with probability 0.5.

If there is no change in P∗
t , then the observed process of price changes is

�Pt = (It − It−1)
S

2
. (6.10)
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Under the assumption of It in Equation (6.9), E (It ) = 0 and Var(It ) = 1, and we have
E (�Pt ) = 0 and

Var(�Pt ) = S 2/2, (6.11)

Cov(�Pt , �Pt−1) = −S 2/4, (6.12)

Cov(�Pt , �Pt−j ) = 0, j > 1. (6.13)

Therefore, the autocorrelation function of �Pt is

ρj (�Pt ) =
{

−0.5 if j = 1,

0 if j > 1.
(6.14)

The bid–ask spread thus introduces a negative lag-1 serial correlation in the series
of observed price changes. This is referred to as the bid–ask bounce in the finance
literature. Intuitively, the bounce can be seen as follows. Assume that the fundamental
price P∗

t is equal to (Pa + Pb)/2. Then Pt assumes the value Pa or Pb. If the previously
observed price is Pa (the higher value), then the current observed price is either
unchanged or lower at Pb. Thus, �Pt is either 0 or −S . However, if the previous
observed price is Pb (the lower value), then �Pt is either 0 or S . The negative lag-1
correlation in �Pt becomes apparent. However, the bid–ask spread does not introduce
any serial correlation beyond lag 1.

A more realistic formulation is to assume that P∗
t follows a random walk so

that �P∗
t = P∗

t − P∗
t−1 = εt , which forms a sequence of independent and identically

distributed random variables with mean 0 and variance σ 2. In addition,{εt } is inde-
pendent of {It }. In this case, Var(�Pt ) = σ 2 + S 2/2, but Cov(�Pt , �Pt−j ) remains
unchanged. Therefore,

ρ1(�Pt ) = −S 2/4

S 2/2 + σ 2
, satisfying − 0.5 < ρ1(�Pt ) ≤ 0.

The magnitude of the lag-1 autocorrelation of �Pt is reduced but remains negative
when S = Pa − Pb > 0. In finance, it might be of interest to study the components of
the bid–ask spread. Interested readers are referred to Campbell et al. (1997) and the
references therein.

To illustrate, consider the tick-by-tick trading data of the Caterpillar stock from
January 4 to January 8, 2010. The data are obtained from the NYSE TAQ database
with 155,267 transactions. We focus on 30-s intraday log returns within the normal
trading hours with effective sample size of 3895. Figure 6.1a shows the trading prices
with 3900 observations, whereas Figure 6.1b shows the corresponding log returns with
3895 observations. Here, the price is defined as the last transaction price within the
30-s interval if trading occurred and the previous price if there was no trade in the
interval. Figure 6.2 shows the sample ACF of the 30-s intraday log returns. The two
horizontal lines denote the asymptotic 95% interval for the ACF. Clearly, lag-1 ACF
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Figure 6.1. Intraday trading prices and log returns of Caterpillar stock from January 4 to

January 8, 2010: (a) prices and (b) log returns both in 30-s interval.
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to January 8, 2010. There are 3895 returns.
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is negative and statistically significant at the 5% level. In fact, we have ρ̂1 = −0.052,
ρ̂2 = 0.016, and ρ̂3 = 0.013. The effect of bid–ask spread is evident.

The effect of bid–ask spread continues to exist in portfolio returns and in multi-
variate financial time series. Consider the bivariate case. Denote the bivariate order-
type indicator by It = (I1t , I2t )

′, where I1t is for the first security and I2t for the second
security. If I1t and I2t are contemporaneously positively correlated, then the bid–ask
spreads can introduce negative lag-1 cross-correlations.

6.3 EMPIRICAL CHARACTERISTICS OF TRADING DATA

Let ti be the calendar time, measured in seconds from midnight, at which the i th
trade of an asset takes place. Associated with the transaction are several variables
such as the trading price, the transaction volume, the prevailing bid and ask quotes,
and so on. The collection of ti and the associated measurements are referred to as the
transactions data . These data have several important characteristics that do not exist
when the observations are aggregated over time. Some of the characteristics are given
as follows:

1. Unequally Spaced Time Intervals. Transactions such as stock trading on an
exchange do not occur at equally spaced time intervals. As such, the actual
trading prices of an asset do not form an equally spaced time series. The
time duration between trades becomes important and might contain useful
information about market microstructure (e.g., trading intensity).

2. Discrete-Valued Prices. In United States, the price change of an asset from one
transaction to the next only occurred in multiples of tick size before January
29, 2001. On the NYSE, the tick size was 1/8th of a dollar before June 24,
1997 and was 1/16th of a dollar before January 29, 2001. Therefore, the price
was a discrete-valued variable in transactions data. Although all equity markets
in United States now use the decimal system, the price change in consecutive
trades tends to occur in multiples of 1 cent and can be treated approximately as
a discrete-valued variable. In some markets, price change may also be subject
to limit constraints set by regulators.

3. Existence of a Daily Periodic or Diurnal Pattern. Under the normal trading
conditions, transaction activity can exhibit a periodic pattern. For instance, on
the NYSE, transactions are “heavier” at the beginning and closing of the trading
hours and “thinner” during lunch hour, resulting in a U-shaped transaction
intensity. Consequently, time durations between transactions also exhibit a
daily cyclical pattern. A similar pattern is also observed in stock volatility.

4. Multiple Transactions within a Single Second. It is possible that multiple trans-
actions, even with different prices, occur at the same time. This is partly due
to the fact that time is measured in seconds, which may be too long a time
scale in computer trading. The TAQ database now provides transactions data
in milliseconds.
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To demonstrate these characteristics, we consider the transactions data of Johnson
and Johnson (JNJ) stock from October 4 to October 15, 2010. There are 10 trading days
and the total number of transactions is 419,565. Our analysis focuses on transactions
occurred during the normal trading hours from 9:30 AM to 16:00 PM Eastern time. It
is well known that overnight stock returns differ substantially from intraday returns;
see Stoll and Whaley (1990) and the references therein. However, for simplicity, we
do not consider overnight returns in the demonstration. Table 6.1 gives a snapshot
of the transactions data. From the table, it is clear that (i) multiple transactions may
occur in the same second, (ii) price change in consecutive trades tends to be small,

TABLE 6.1. A Snapshot of the Transactions Data for Johnson and Johnson Stock on
October 5, 2011

Date Hour Minute Second Price Volume

20101005 9 29 30 62.1000 100
20101005 9 29 45 62.1000 100
20101005 9 30 00 62.0800 185
20101005 9 30 00 62.0800 185
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.0800 550
20101005 9 30 00 62.1000 100
20101005 9 30 00 62.1000 100
...

...
...

...
...

...

20101005 9 30 00 62.0800 100
20101005 9 30 03 62.0900 100
20101005 9 30 07 62.0700 100
20101005 9 30 07 62.0800 100
20101005 9 30 08 62.1000 100
20101005 9 30 08 62.1000 100
20101005 9 30 08 62.1000 100
20101005 9 30 08 62.1000 100
20101005 9 30 08 62.1000 100
20101005 9 30 08 62.1000 100
20101005 9 30 09 62.1000 100
20101005 9 30 09 62.1000 100
20101005 9 30 10 62.0900 126753
20101005 9 30 11 62.0900 120
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and (iii) most transactions have small volume, but there exist occasional transactions
with large volume.

Within the normal trading hours from October 4 to October 15, 2010, there are
418,855 intraday price changes for the JNJ stock. Figure 6.3a shows the time plot of
the intraday price changes, whereas Figure 6.3b gives the associated histogram. Since
large price changes are rare, the histogram is shown for price changes between −4
cents to 4 cents only. The time plot and histogram show a symmetric pattern between
increases and decreases in trading prices of the JNJ stock. In fact, large price changes
seem to occur in pairs consisting of two large movements in the opposite directions.
From the histogram, most of consecutive trades are without any price changes.

Table 6.2 gives the counts and frequencies of price change for the JNJ stock. The
changes are classified into seven categories. From the table, we make the following
observations:

1. About 73% of JNJ intraday transactions were without price change.

2. Approximately 26% of the intraday transactions result in a price change that
is less than or equal to 1 cent.
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Figure 6.3. Time plot and histogram of intraday price changes in consecutive trades for

Johnson and Johnson stock from October 4 to October 15, 2010. Only transactions occurred in

the normal trading hours are used. There are 418,855 price changes in 10 trading days.

TABLE 6.2. Frequencies of Price Change in Consecutive Trades for Johnson and Johnson
Stock From October 4 to October 15, 2010

Cents < − 2 [−2, −1) [−1, 0) 0 (0, 1] (1, 2] > 2
Counts 540 1,794 55,325 304,067 54,860 1,711 558
Percentage 0.128 0.428 13.209 72.595 13.098 0.408 0.132

a Only Transactions occurred in the normal trading hours are used. Total number of price changes is 418,855.
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3. Only 0.83% of the transactions were associated with a price change between
(1, 2] cents.

4. Only about 0.26% of the transactions resulted in price changes of 2 cents or
more.

5. The empirical distribution of price changes is approximately symmetric with
respect to 0.

Consider next the time duration, measured in seconds, between two consecutive trades
of the JNJ stock. Figure 6.4 shows the time plot of the first 3000 durations from
October 4 to October 15, 2010. The plot confirms that trading did not occur at equally
spaced time intervals and there exist zero durations, that is, multiple trades in a second.

For diurnal pattern, we consider the number of transactions in a 5-min time
interval for the JNJ stock. Denote the series by xt . That is, x1 is the number of
JNJ transactions from 09:30 AM to 09:35 AM on October 4, 2010 Eastern time, x2
is the number of transactions from 09:35 AM to 09:40 AM, and so on. The time
gaps between trading days are ignored. Figure 6.5a shows the time plot of xt , and
Figure 6.5b shows the sample ACF of xt for lags 1–234. The time plot exhibits
roughly a cyclical U-shaped pattern with 10 cycles, and the ACF shows a seasonal
pattern with periodicity 78, which is the number of 5-min intervals in a trading day.
The number of transactions thus exhibits a daily pattern.

Finally, we consider the transactions data of Caterpillar stock on January 4, 2010.
There are 37,716 transactions in the regular trading hours. Figure 6.6a shows the
transaction prices versus the calendar time measured in seconds from the midnight,
and Figure 6.6b shows the time plot of price changes. In this particular instance, the
price increased gradually until approximately 4250 s from midnight then it decreased
slowly to about $58.5 per share when the market is closed. The price changes continue
to exhibit patterns similar to those of the JNJ stock. Figure 6.7 shows the histogram
of the price changes for the Caterpillar stock. The histogram shows some distinct
characteristics. First, similar to JNJ stock, the price changes appear to be symmetric
with respective to 0. Second, the price changes concentrate on multiples of 1 cent.
Out of the 37,715 transactions, 64.98% has no price change; see the big spike of the
histogram. Details of the summary of price changes for the Caterpillar stock are given
in Table 6.3.

6.4 MODELS FOR PRICE CHANGES

Consider the trading of an asset. Let ti be the calendar time, measured in seconds
from midnight, when the i th transaction took place. Let Pti be the transaction price.
The price change from the (i − 1)th to the i th trade is yi ≡ �Pti

= Pti − Pti−1
and the

time duration is �ti = ti − ti−1. Here, it is understood that the subscript i in �ti and
yi denotes the time sequence of transactions, not the calendar time. In the following
text, we consider models for yi and �ti both individually and together.

The discreteness and concentration on “no change” make it difficult to model the
intraday price changes. Campbell et al. (1997) discuss several econometric models
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that have been proposed in the literature. Here, we mention two models that have the
advantage of employing explanatory variables to study the intraday price movements.
The first model is the ordered probit model used by Hauseman et al. (1992) to study the
price movements in transactions data. The second model has been considered recently
by McCulloch and Tsay (2000) and is a simplified version of the model proposed by
Rydberg and Shephard (2003); see also Ghysels (2000).

6.4.1 Ordered Probit Model

Let y∗
i be the unobservable price change of the asset under study (i.e., y∗

i = P∗
ti

− P∗
ti−1

),
where P∗

t is the virtual price of the asset at time t . The ordered probit model assumes
that y∗

i is a continuous random variable and follows the model

y∗
i = x i β + εi , (6.15)

where x i is a p-dimensional row vector of explanatory variables available at time
ti−1, β is a p × 1 parameter vector, E (εi |x i ) = 0, Var(εi |x i ) = σ 2

i , and Cov(εi , εj ) =
0 for i �= j . The conditional variance σ 2

i is assumed to be a positive function of the
explanatory variable wi —that is,

σ 2
i = g(wi ), (6.16)

where g(.) is a positive function. For financial transactions data, wi may contain
the time interval ti − ti−1 and some conditional heteroscedastic variables. Typically,
one also assumes that the conditional distribution of εi given x i and wi is
Gaussian.

Suppose that the observed price change yi may assume k possible values. In
theory, k can be infinity, but countable. In practice, k is finite and may involve
combining several categories into a single value. For example, we have k = 7 in
Table 6.3, where the first value “< −2 cents” means that the price drops more than
2 cents. We denote the k possible values as {s1, . . . , sk }. The ordered probit model
postulates the relationship between yi and y∗

i as

yi = sj if αj−1 < y∗
i ≤ αj , j = 1, . . . , k , (6.17)

TABLE 6.3. Frequencies of Price Change for Caterpillar Stock on January 4, 2010

Category 1 2 3 4 5 6 7
Cents < − 2 [−2, −1) [−1, 0) 0 (0,1] (1,2] > 2
Percentage 0.605 1.692 15.20 64.98 15.04 1.832 0.655
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where αj are real numbers satisfying −∞ = α0 < α1 < · · · < αk−1 < αk = ∞. Under
the assumption of conditional Gaussian distribution, we have

P(yi = sj |x i , wi ) = P(αj−1 < x i β + εi ≤ αj |x i , wi )

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P(x i β + εi ≤ α1|x i , wi ) if j = 1,

P(αj−1 < x i β + εi ≤ αj |x i , wi ) if j = 2, . . . , k − 1,

P(αk−1 < x i β + εi |x i , wi ) if j = k ,

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�

[
α1 − x i β

σi (wi )

]
if j = 1,

�

[
αj − x i β

σi (wi )

]
− �

[
αj−1 − x i β

σi (wi )

]
if j = 2, . . . , k − 1,

1 − �

[
αk−1 − x i β

σi (wi )

]
if j = k ,

(6.18)

where �(x) is the cumulative distribution function of the standard normal random
variable evaluated at x , and we write σi (wi ) to denote that σ 2

i is a positive function
of wi . From the definition, an ordered probit model is driven by an unobservable
continuous random variable. The observed values, which have a natural ordering, can
be regarded as categories representing the underlying process.

The ordered probit model contains parameters β, αi (i = 1, . . . , k − 1), and those
in the conditional variance function σi (wi ) in Equation (6.16). These parameters can
be estimated by the maximum likelihood or Markov chain Monte Carlo methods. In
this chapter, we use the command polr of the R package MASS to estimate ordered
probit models.

Example 6.1. To illustrate, we consider again the intraday price changes of Cater-
pillar stock on January 4, 2010. There are 37,716 transactions during the normal
trading hours so that we have 37,715 price changes. For simplicity, we classify the
price change into seven categories as shown in Table 6.3. Our analysis focuses on
the dynamic dependence of intraday price changes. As such, we define indicator (or
dummy) variables for lagged price changes:

y�,j =
{

1 if yi−� = sj

0 otherwise,

where sj denotes the j th category of price change and yi−� is the (i − �)th price
change at time ti−�, where j = 2, . . . , 7 and � = 1 and 2. In other words, we employ
the classifications of price changes for the previous two consecutive trades. As usual,
with seven categories, only six indicator variables are needed.

We also employ the observed price changes yi−� for � = 1, 2, 3 and the lag-2 trans-
action volume defined as vi−2 = Vi−2/100, where Vi−2 is the actual volume. We do
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not use price volume because price is relatively stable in a trading day. Consequently,
the model entertained is

x i β = β1vi−2 +
3∑

�=1

β1+�yi−� +
7∑

j=2

γ1,j y1,j +
7∑

j=2

γ2,j y2,j . (6.19)

For simplicity, we start with σ 2
i (wi ) = σ 2, a constant. Parameter estimates of the

model are given in Table 6.4, where all estimates of Equation (6.19) are negative.
Clearly, all estimates but one are statistical significant at the usual 5% level. As a
matter of fact, the model shown is a simplified one after removing some explanatory
variables that were not statistically significant. For instance, we also included the time
duration �ti = ti − ti−1 in the preliminary analysis and decided to drop the variable
because its estimate is not statistically significant at the 5% level. The significance of
the indicator variables shows that there exists dynamic dependence in intraday price
change. The fitted model thus can be used to provide probability forecasts for the next
transaction price change. Indeed, the model provides probability for each category of
price change at each transaction. Figure 6.8 shows the time plots of fitted probabilities
for categories 1, 4, and 7. As expected, the fitted probability for category 4, which
denotes no price change, is high, but there are cases in which the probabilities of
category 1 or 7 are high.

Finally, it is interesting to study the fitted boundary partitions of the ordered
probit model in Table 6.4. First, because the explanatory variables may have nonzero
means, the estimates of boundary parameters αi are not symmetric with respect to 0.
Second, α̂2 − α̂1 = 0.577 and α̂6 − α̂5 = 0.601. The two intervals roughly have the
same length. Similarly, α̂3 − α̂2 = 1.157, which is close to α̂5 − α̂4 = 1.140. These
results are consistent with the empirical observation that price changes appear to be
roughly symmetric with respect to 0 as shown in Table 6.3. �

TABLE 6.4. Estimation Results of an Ordered Probit Model for the Intraday Price Changes
of Caterpillar Stock on January 4, 2010 with 37,716 Transactionsa

(a) Boundary Partitions of the Probit Model

Parameter α1 α2 α3 α4 α5 α6
Estimate −4.594 −4.017 −2.860 −0.853 0.287 0.888
t −31.48 −27.80 −19.89 −5.944 2.000 6.188

(b) Equation Prameters of Probit Model (Estimates are Negative)
Parameter β1 β2 β3 β4 γ1,2 γ1,3 γ1,4 γ1,5
Estimate 0.004 7.837 10.86 12.28 0.274 0.743 1.331 1.858

t 3.983 5.363 7.098 15.93 2.971 8.173 13.81 17.83
Parameter γ1,6 γ1,7 γ2,2 γ2,3 γ2,4 γ2,5 γ2,6 γ2,7
Estimate 2.262 2.493 0.099 0.307 0.531 0.745 0.933 0.859
t 18.57 15.95 1.053 3.324 5.419 7.009 7.528 5.381

a The model is in Equation (6.19) and t denotes t-ratio.
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Figure 6.8. Time plots of fitted probabilities of price change for Caterpillar stock on January

4, 2010: the three plots are for (a) decrease 2 cents or more, (b) no change, and (c) increase 2

cents or more.

Discussion. The command polr allows for predetermined weights to handle
heteroscedasticity, but it cannot perform simultaneous estimation of the volatility and
probit equations. See Hauseman et al. (1992) and Tsay (2010) for some examples
with time-varying σ 2

i (wi ) function. Finally, as usual, only six indicator variables are
needed for each lagged value of yi .

R Demonstrations for Ordered Probit Models. Output edited.

> da=read.table("taq-cat-t-jan042010.txt",header=T)
> head(da)

date hour minute second price size
1 20100104 9 30 0 57.65 3910
.....

6 20100104 9 30 1 57.65 462
> vol=da$size/100
> da1=read.table("taq-cat-cpch-jan042010.txt")
> cpch=da1[,1] % category of price change
> pch=da1[,2] % price change
> cf=as.factor(cpch) % create categories in R
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> length(cf)
[1] 37715

> y=cf[4:37715]
> y1=cf[3:37714] % create indicator variables for lag-1 cpch
> y2=cf[2:37713] % create indicator variables for lag-2 cpch

> vol=vol[2:37716]
> v2=vol[2:37713] % create lag-2 volume

> cp1=pch[3:37714] % select lagged price changes
> cp2=pch[2:37713]; cp3=pch[1:37712]

> library(MASS) % load package
> m1=polr(y∼v2+cp1+cp2+cp3+y1+y2,method="probit")
> summary(m1)
Call:
polr(formula = y ∼ v2 + cp1 + cp2 + cp3 + y1 + y2, method = "probit")
Coefficients:

Value Std. Error t value
v2 -0.003765 0.0009453 -3.983
cp1 -7.836883 1.4613047 -5.363
cp2 -10.864394 1.5306456 -7.098
cp3 -12.283682 0.7710955 -15.930
y12 -0.274407 0.0923566 -2.971
y13 -0.742792 0.0908854 -8.173
y14 -1.330665 0.0963540 -13.810
y15 -1.858199 0.1042257 -17.829
y16 -2.261587 0.1218013 -18.568
y17 -2.493321 0.1563177 -15.950
y22 -0.098542 0.0935908 -1.053
y23 -0.307034 0.0923725 -3.324
y24 -0.531115 0.0980150 -5.419
y25 -0.744706 0.1062435 -7.009
y26 -0.932655 0.1238918 -7.528
y27 -0.858858 0.1596219 -5.381

Intercepts:
Value Std.Error t value

1|2 -4.5941 0.1459 -31.4803
2|3 -4.0170 0.1445 -27.7989
3|4 -2.8599 0.1438 -19.8926
4|5 -0.8528 0.1435 -5.9437
5|6 0.2868 0.1434 1.9996
6|7 0.8882 0.1435 6.1883

Residual Deviance: 74802.56
AIC: 74846.56
> names(m1)
[1] "coefficients" "zeta" "deviance" "fitted.values"
[5] "lev" "terms" "df.residual" "edf"
[9] "n" "nobs" "call" "method"
[13] "convergence" "niter" "lp" "model"
[17] "contrasts" "xlevels"
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> yhat=m1$fitted.values
> print(yhat[1:5,],digits=3)

1 2 3 4 5 6 7
1 1.11e-03 0.005420 0.08605 0.660 0.2134 0.0266 0.007696
2 1.55e-02 0.041461 0.27883 0.608 0.0535 0.0028 0.000444
3 8.99e-06 0.000094 0.00522 0.287 0.4311 0.1605 0.116298
4 1.87e-04 0.001251 0.03267 0.539 0.3343 0.0658 0.027144
5 6.41e-04 0.003470 0.06457 0.630 0.2527 0.0365 0.011836

6.4.2 A Decomposition Model

An alternative approach to modeling price change is to decompose it into three com-
ponents and use conditional specifications for the components (Rydberg and Shephard,
2003). The three components are indicators for price change, the direction of price
movement if there is a change, and the size of price change if a change occurs.
Specifically, the price change at the i th transaction can be written as

yi ≡ Pti − Pti−1
= Ai Di Si , (6.20)

where Ai is a binary variable defined as

Ai =
{

1 if there is a price change at the i th trade,

0 if price remains the same at thei th trade,
(6.21)

Di is also a discrete variable signifying the direction of the price change if a change
occurs—that is,

Di |(Ai = 1) =
{

1 if price increases at the i th trade,

− 1 if price drops at the i th trade,
(6.22)

where Di |(Ai = 1) means that Di is defined under the condition of Ai = 1, and Si is
the size of the price change. We set Si = 0 if there is no price change at the i th trade.
When there is a price change, Si is positive. If price change is measured in tick size,
Si becomes a positive integer-valued random variable when there is a price change at
the i th trade.

Note that Di is not needed when Ai = 0, and there is a natural ordering in the
decomposition. Di is well defined only when Ai = 1 and Si is meaningful when
Ai = 1 and Di is given. Model specification under the decomposition makes use of
the ordering.

Let Fi be the information set available at the i th transaction. Examples of elements
in Fi are �ti−j , Ai−j , Di−j , and Si−j for j ≥ 0. The evolution of price change under
model (Eq. 6.20) can then be partitioned as

P(yi |Fi−1) = P(Ai Di Si |Fi−1) = P(Si |Di , Ai , Fi−1)P(Di |Ai , Fi−1)P(Ai |Fi−1).

(6.23)
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Since Ai is a binary variable, it suffices to consider the evolution of the probability
pi = P(Ai = 1) over time. We assume that

ln

(
pi

1 − pi

)
= x i β or pi = ex i β

1 + ex i β
, (6.24)

where x i is a finite-dimensional vector consisting of elements of Fi−1 and β is a
parameter vector. Conditioned on Ai = 1, Di is also a binary variable, and we use the
following model for δi = P(Di = 1|Ai = 1):

ln

(
δi

1 − δi

)
= z i γ or δi = ez i γ

1 + ez i γ
, (6.25)

where z i is a finite-dimensional vector consisting of elements of Fi−1 and γ is a param-
eter vector. To allow for asymmetry between positive and negative price changes, we
assume that

Si |(Di , Ai = 1)∼1 +
{

g(λu ,i ) if Di = 1, Ai = 1,

g(λd ,i ) if Di = −1, Ai = 1,
(6.26)

where g(λ) is a geometric distribution with parameter λ and the parameters λj ,i evolve
over time as

ln

(
λj ,i

1 − λj ,i

)
= wi θj or λj ,i = ewi θj

1 + ewi θj
, j = u , d , (6.27)

where wi is again a finite-dimensional explanatory variable in Fi−1 and θj is a param-
eter vector.

In Equation (6.26), the probability mass function of a random variable x , which
follows the geometric distribution g(λ), is

p(x = m) = λ(1 − λ)m , m = 0, 1, 2, . . .

We added 1 to the geometric distribution so that the price change, if it occurs, is
at least 1 tick. In Equation (6.27), we take the logistic transformation to ensure that
λj ,i ∈ [0, 1].

The previous specification classifies the i th trade, or transaction, into one of three
categories:

1. No price change: Ai = 0 and the associated probability is (1 − pi ).

2. A price increase: Ai = 1, Di = 1, and the associated probability is pi δi . The
size of the price increase is governed by 1 + g(λu ,i ).

3. A price drop: Ai = 1, Di = −1, and the associated probability is pi (1 − δi ).
The size of the price drop is governed by 1 + g(λd ,i ).
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Let Ii (j ) for j = 1, 2, 3 be the indicator variables of the prior three categories.
That is, Ii (j ) = 1 if the j th category occurs and Ii (j ) = 0 otherwise. The log likelihood
function of Equation (6.23) becomes

ln[P(yi |Fi−1)]

= Ii (1) ln[(1 − pi )] + Ii (2)[ln(pi ) + ln(δi ) + ln(λu ,i ) + (Si − 1) ln(1 − λu ,i )]

+ Ii (3)[ln(pi ) + ln(1 − δi ) + ln(λd ,i ) + (Si − 1) ln(1 − λd ,i )],

and the overall log likelihood function is

ln[P(y1, . . . , yn |F0)] =
n∑

i=1

ln[P(yi |Fi−1)], (6.28)

which is a function of parameters β, γ , θu , and θd . For simplicity, one can estimate
parameters of the three categories separately with properly identified observations.

Example 6.2. We illustrate the decomposition model by analyzing, again, the intraday
transactions of Caterpillar stock on January 4, 2010. As mentioned in Example 6.1,
there are 37,715 price changes during the normal trading hours, and we classify
the price changes into seven categories. To keep the model simple, we employ the
following explanatory variables:

1. Ai−1: the action indicator of the previous trade (i.e., the (i − 1)th trade).

2. Di−1: the direction indicator of the previous trade.

3. Si−1: the size of the previous trade.

Other variables available following the (i − 1) trade can also be used. Because we
use lag-1 explanatory variables, the actual sample size is 37,714, and the model
employed is

ln

(
pi

1 − pi

)
= β0 + β1Ai−1,

ln

(
δi

1 − δi

)
= γ0 + γ1Di−1, (6.29)

ln

(
λu ,i

1 − λu ,i

)
= θu ,0 + θu ,1Si−1,

ln

(
λd ,i

1 − λd ,i

)
= θd ,0 + θd ,1Si−1.

The parameter estimates of the model are given in Table 6.5. The estimated simple
model shows some dynamic dependence in the price change. In particular, the trade-
by-trade price changes of CAT stock exhibit some of the following appealing features:
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TABLE 6.5. Parameter Estimates of the ADS Model in Equation (6.29) for Caterpillar Stock
Traded on January 4, 2010

Parameter β0 β1 γ0 γ1

Estimate −1.073 1.183 −0.010 −1.241
standard error 0.015 0.023 0.019 0.029
Parameter θu ,0 θu ,1 θd ,0 θd ,1
Estimate 1.649 −0.297 1.534 −0.162
standard error 0.041 0.035 0.039 0.037

1. The probability of a price change depends on the previous price change. Specif-
ically, we have

P(Ai = 1|Ai−1 = 0) = exp(−1.073)

1 + exp(−1.073)
= 0.255

P(Ai = 1|Ai−1 = 1) = exp(−1.073 + 1.183)

1 + exp(−1.073 + 1.183)
= 0.527.

The result indicates that (non) price changes may occur in clusters and, as
expected, most transactions are without price change. When no price change
occurred at the (i − 1)th trade, then only about one out of four trades in the
subsequent transaction has a price change. When there is a price change at
the (i − 1)th transaction, the probability of a price change in the i th trade
increases to about 0.5.

2. The direction of price change is governed by

P(Di = 1|Fi−1, Ai ) =

⎧⎪⎨
⎪⎩

0.500 if Di−1 = 0 (i.e., Ai−1 = 0),

0.223 if Di−1 = 1, Ai = 1,

0.774 if Di−1 = −1, Ai = 1.

This result says that (i) if no price change occurred at the (i − 1)th trade,
then the chances for a price increase or decrease at the i th trade are about
even; and (ii) the probabilities of consecutive price increases or decreases are
relatively small. The probability of a price increase at the i th trade given that
a price change occurs at the i th trade, and there was a price increase at the
(i − 1)th trade is only 22.3%. However, the probability of a price increase is
about 77.4% given that a price change occurs at the i th trade, and there was a
price decrease at the (i − 1)th trade. Consequently, this result shows the effect
of bid–ask bounce and supports price reversals in high frequency trading.

3. There is weak evidence suggesting that big price changes have a higher prob-
ability to be followed by another big price change. Consider the size of a price
increase. We have

Si |(Di = 1) ∼ 1 + g(λu ,i ), λu ,i = 1.649 − 0.297Si−1.
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Using the probability mass function of a geometric distribution, we obtain that
the probability of a price increase by 1 cent is 0.794 at the i th trade if the
transaction results in a price increase and Si−1 = 1. The probability reduces to
0.742 if Si−1 = 2 and to 0.681 if Si−1 = 3. Similarly, the probability of a price
increase by 2 cents is 0.163 at the i th trade if the transaction results in a price
increase and Si−1 = 1. The probability increases to 0.192 if Si−1 = 2 and to
0.217 if Si−1 = 3. Consequently, the probability of a large Si is proportional
to Si−1 given that there is a price increase at the i th trade.

�

R Demonstration for ADS Models with Geometric Distribution. Output
edited.

> da=read.table("taq-cat-cpch-jan042010.txt")
> dim(da)
[1] 37715 2
> pch=da[,2] % create Ai, Di, and Si and their lagged variables
> idx=c(1:37715)[pch > 0]
> jdx=c(1:37715)[pch < 0]
> A=rep(0,37715); A[idx]=1; A[jdx]=1
> D=rep(0,37715); D[idx]=1; D[jdx]=-1
> S=abs(da[,1]-4)
> Ai=A[2:37715]; Aim1=A[1:37714]
> Di=D[2:37715]; Dim1=D[1:37714]
> Si=S[2:37715]; Sim1=S[1:37714]
> m1=glm(Ai∼Aim1,family="binomial")
> summary(m1)
Call: glm(formula = Ai ∼ Aim1, family = "binomial")

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.07342 0.01466 -73.22 <2e-16 ***
Aim1 1.18316 0.02277 51.95 <2e-16 ***
---
Residual deviance: 46085 on 37712 degrees of freedom
AIC: 46089

> di=Di[Ai==1]
> dim1=Dim1[Ai==1]
> di=(di+abs(di))/2 % transform di to binary
> m2=glm(di∼dim1,family="binomial")
> summary(m2)
Call: glm(formula = di ∼ dim1, family = "binomial")

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.009755 0.018994 -0.514 0.608
dim1 -1.241364 0.028731 -43.207 <2e-16 ***
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---
Residual deviance: 16069 on 13207 degrees of freedom
AIC: 16073

> si=Si[Di==1]
> sim1=Sim1[Di==1]
> source("GeoSize.R") % R script to fit Geometric dist.
> m3=GeoSize(si,sim1)
Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
omega1 1.6489885 0.0406517 40.5639 < 2.22e-16 ***
omega2 -0.2966793 0.0354231 -8.3753 < 2.22e-16 ***
---
> nsi=Si[Di==-1]
> nsim1=Sim1[Di==-1]
> m4=GeoSize(nsi,nsim1)
Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
omega1 1.5339270 0.0392826 39.04847 < 2.22e-16 ***
omega2 -0.1617696 0.0367264 -4.40472 1.0592e-05 ***

6.5 DURATION MODELS

Duration models are concerned with time intervals between trades. Longer durations
indicate lack of trading activities, which in turn signify a period of no new information.
The dynamic behavior of durations thus contains useful information about intraday
market activities. Using concepts similar to the ARCH models for volatility, Engle
and Russell (1998) propose an autoregressive conditional duration (ACD) model to
describe the evolution of time durations for (heavily traded) stocks. Zhang et al. (2005)
extend the ACD model to account for nonlinearity and structural breaks in the data.
In this section, we introduce some simple duration models.

A special feature of duration data is that all observations are positive. This feature
also occurs in data of other applications. For instance, the daily price range of a stock is
typically positive. Thus, applications of the duration models discussed are not limited
to transactions data. They can be used in many other situations.

To illustrate, we consider the intraday transactions of the Caterpillar stock from
January 4 to January 8, 2010. Focusing on the normal trading hours, we have 155,077
transactions during the sample period. Thus, there are 155,076 time durations between
trades. As many trades can occur in the same second, we ignore the zero durations.
Consequently, we have 37,674 nonzero intraday durations. Figure 6.9 shows the time
plot of those nonzero durations. From the plot, we see that there exists certain diurnal
pattern in the durations.

Because intraday transactions exhibit some diurnal pattern, we focus on the
adjusted time duration

xi = �ti /f (ti ), (6.30)
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Figure 6.9. Time plot of nonzero durations between trades for Caterpillar stock from January

4 to January 8, 2010.

where f (ti ) is a deterministic function consisting of the cyclical component of �ti .
Obviously, f (ti ) depends on the underlying asset and the systematic behavior of the
market. In practice, there are many ways to estimate f (ti ), but no single method
dominates the others in terms of statistical properties. A common approach is to
use smoothing spline. Here, we use simple quadratic functions to take care of the
deterministic component of daily trading activities.

6.5.1 Diurnal Component

For the CAT transactions data, we assume

f (ti ) = exp[d(ti )], d(ti ) = β0 + β1f1(ti ) + β2f2(ti ), (6.31)

where

f1(ti ) = ti − 43, 200

23, 400
and f2(ti ) = f 2

1 (ti ),

where 43,200 denotes the 12:00 noon and 23,400 is number of trading hours measured
in seconds. We use these two functions based on the daily pattern shown in Figure 6.9.
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Figure 6.10. Time plot of adjusted nonzero durations between trades for Caterpillar stock

from January 4 to January 8, 2010.

The coefficients βj of Equation (6.31) are obtained by the least squares method
of the linear regression

ln(�ti ) = β0 +
2∑

j=1

βj fj (ti ) + εi .

The fitted model is

ln(�̂ti ) = 0.9396 + 0.5702f1(ti ) − 2.1655f2(ti ),

where standard errors of the coefficient estimates are 0.0061, 0.0180, and 0.0511,
respectively. These estimates are highly significant. Figure 6.10 shows the time plot
of adjusted durations based on the model in Equation (6.31). From the plot, the diurnal
pattern is largely removed.

R Demonstrations for Diurnal Component. Output edited.

> da=read.table("taq-cat-t-jan04t082010.txt",header=T)
> head(da)

DATE hour minute second PRICE SIZE
1 20100104 5 34 26 57.56 200
.......

> sec=3600*dahour+60*daminute+da$second % time in seconds
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> ist=3600*9+30*60; end=3600*16
> lunch=3600*12
> length(sec)
[1] 155267
> idx=c(1:155267)[sec < ist] % before market opens
> jdx=c(1:155267)[sec > end] % after market closes
> sec=sec[-c(idx,jdx)] % normal trading hours only.
> length(sec)
[1] 155077
> dt=diff(sec)
> kdx=c(1:length(dt))[dt > 0] % Positive durations only
> length(kdx)
[1] 37674
> ti=sec[2:155077]
> dt=dt[kdx]
> ti=ti[kdx]
> plot(dt,type=‘l’,xlab=‘index’,ylab=‘duration’)
> st=3600*6.5
> f1=(ti-lunch)/st
> ft=cbind(f1,f1^2)
> m2=lm(log(dt)∼ft) % Linear model for log(durations)
> summary(m2)
Call: lm(formula = log(dt) ∼ ft)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.939622 0.006126 153.39 <2e-16 ***
ftf1 0.570215 0.017971 31.73 <2e-16 ***
ft -2.165498 0.051115 -42.37 <2e-16 ***
---
Residual standard error: 0.7874 on 37671 degrees of freedom
Multiple R-squared: 0.04566, Adjusted R-squared: 0.04561

> names(m2)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

> fit=m2$fitted.values
> adjdt=dt/exp(fit)

6.5.2 The ACD Model

The ACD model uses the idea of GARCH models to study the dynamic structure of
the adjusted duration xi of Equation (6.30).

Let ψi = E (xi |Fi−1) be the conditional expectation of the adjusted duration
between the (i − 1)th and i th trades, where Fi−1 is the information set available
at the (i − 1)th trade. In other words, ψi is the expected adjusted duration given Fi−1.
The basic ACD model is defined as

xi = ψi εi , (6.32)
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where {εi } is a sequence of independent and identically distributed nonnegative random
variables such that E (εi ) = 1. In Engle and Russell (1998), εi follows a standard
exponential or a standardized Weibull distribution, and ψi assumes the form

ψi = ω +
r∑

j=1

γj xi−j +
s∑

j=1

ωj ψi−j . (6.33)

Such a model is referred to as an ACD(r , s) model. When the distribution of εi is
exponential, the resulting model is called an EACD(r , s) model. Similarly, if εi follows
a Weibull distribution, the model is a WACD(r , s) model. If necessary, readers are
referred to Appendix A for a quick review of exponential and Weibull distributions.

Similar to GARCH models, the process ηi = xi − ψi is a martingale difference
sequence (i.e., E (ηi |Fi−1) = 0), and the ACD(r , s) model can be written as

xi = ω +
max(r ,s)∑

j=1

(γj + ωj )xi−j −
s∑

j=1

ωj ηi−j + ηj , (6.34)

which is in the form of an ARMA process with non-Gaussian innovations. It is
understood here that γj = 0 for j > r and ωj = 0 for j > s . Such a representation
can be used to obtain the basic conditions for weak stationarity of the ACD model.
For instance, taking expectation on both sides of Equation (6.34) and assuming weak
stationarity, we have

E (xi ) = ω

1 − ∑max(r ,s)
j=1 (γj + ωj )

.

Therefore, we assume that ω > 0 and 1 >
∑

j (γj + ωj ) because the expected duration
is positive. As another application of Equation (6.34), we study properties of the
EACD(1,1) model.

EACD(1,1) Model. An EACD(1,1) model can be written as

xi = ψi εi , ψi = ω + γ1xi−1 + ω1ψi−1, (6.35)

where εi follows the standard exponential distribution. Using the moments of a stan-
dard exponential distribution in Appendix A, we have E (εi ) = 1, Var(εi ) = 1, and
E (ε2

i ) = Var(xi ) + [E (xi )]
2 = 2. Assuming that xi is weakly stationary (i.e., the first

two moments of xi are time invariant), we derive the variance of xi . First, taking the
expectation of Equation (6.35), we have

E (xi ) = E [E (ψi εi |Fi−1)] = E (ψi ), E (ψi ) = ω + γ1E (xi−1) + ω1E (ψi−1).

(6.36)
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Under weak stationarity, E (ψi ) = E (ψi−1) so that Equation (6.36) gives

μx ≡ E (xi ) = E (ψi ) = ω

1 − γ1 − ω1
. (6.37)

Next, because E (ε2
i ) = 2, we have E (x2

i ) = E [E (ψ2
i ε2

i |Fi−1)] = 2E (ψ2
i ).

Taking the square of ψi in Equation (6.35) and the expectation and using weak
stationarity of ψi and xi , we have, after some algebra, that

E (ψ2
i ) = μ2

x × 1 − (γ1 + ω1)
2

1 − 2γ 2
1 − ω2

1 − 2γ1ω1

. (6.38)

Finally, using Var(xi ) = E (x2
i ) − [E (xi )]

2 and E (x2
i ) = 2E (ψ2

i ), we have

Var(xi ) = 2E (ψ2
i ) − μ2

x = μ2
x × 1 − ω2

1 − 2γ1ω1

1 − ω2
1 − 2γ1ω1 − 2γ 2

1

,

where μx is defined in Equation (6.37). This result shows that, to have time-invariant
unconditional variance, the EACD(1,1) model in Equation (6.35) must satisfy
1 > 2γ 2

1 + ω2
1 + 2γ1ω1. The variance of a WACD(1,1) model can be obtained using

the same techniques and the first two moments of a standardized Weibull distribution.

ACD Models with a Generalized Gamma Distribution. In the statistical
literature, intensity function is often expressed in terms of hazard function. As shown
in Appendix B, the hazard function of an EACD model is constant over time and that of
a WACD model is a monotonous function. These hazard functions are rather restrictive
in application, as the intensity function of stock transactions might not be constant
or monotone over time. To increase the flexibility of the associated hazard function,
Zhang et al. (2005) employ a (standardized) generalized gamma distribution for εi .
See Appendix A for some basic properties of a generalized gamma distribution. The
resulting hazard function may assume various patterns, including U shape or inverted
U shape. We refer to an ACD model with innovations that follow a generalized gamma
distribution as a GACD(r , s) model.

6.5.3 Estimation

For an ACD(r , s) model, let io = max(r , s) and x t = (x1, . . . , xt )
′. The likelihood

function of the durations x1, . . . , xT is

f (x T |θ) =
⎡
⎣ T∏

i=io+1

f (xi |Fi−1, θ)

⎤
⎦ × f (x io |θ),

where θ denotes the vector of model parameters and T is the sample size. The marginal
probability density function (pdf) f (x io

|θ) of the previous equation is rather compli-
cated for a general ACD model. Because its impact on the likelihood function is
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diminishing as the sample size T increases, this marginal density is often ignored,
resulting in use of the conditional likelihood method. For a WACD model, we use the
pdf of Equation (6.48) and obtain the conditional log likelihood function

�(x |θ , x io
) =

T∑
i=i0+1

α ln

[
�

(
1 + 1

α

)]
+ ln

(
α

xi

)
+ α ln

(
xi

ψi

)
−

(
�

(
1 + 1

α

)
xi

ψi

)α

,

(6.39)

where ψi = ω + ∑r
j=1 γj xi−j + ∑s

j=1 ωj ψi−j , θ = (ω, γ1, . . . , γr , ω1, . . . , ωs , α)′ and
x = (xio+1, . . . , xT )′. When α = 1, the (conditional) log likelihood function reduces to
that of an EACD(r , s) model.

For a GACD(r , s) model, the conditional log likelihood function is

�(x |θ , x io ) =
T∑

i=io+1

ln

(
α

�(κ)

)
+ (κα − 1) ln(xi ) − κα ln(λψi ) −

(
xi

λψi

)α

, (6.40)

where λ = �(κ)/�(κ + 1/α) and the parameter vector θ now also includes κ .
As expected, when κ = 1, λ = 1/�(1 + 1/α), and the log likelihood function in
Equation (6.40) reduces to that of a WACD(r , s) model in Equation (6.39). This log
likelihood function can be rewritten in many ways to simplify the estimation.

Under some regularity conditions, the conditional maximum likelihood estimates
are asymptotically normal; see Engle and Russell (1998) and the references therein.
In practice, simulation can be used to obtain finite-sample reference distributions for
the problem of interest once a duration model is specified.

Example 6.3. As an illustration of duration models, we consider the intraday trans-
action durations of CAT stock from January 4 to January 8, 2010. As stated in the
previous section, there are 37,674 positive durations during the 5 trading days, and
we use the simple quadratic function of Equation (6.31) to remove the diurnal pattern
of the data. Our analysis, thus, employs the adjusted durations of Figure 6.10.

Let xi be the adjusted duration series. Figure 6.11a shows the sample ACF of xi .
Clearly, there are strong and persistent serial correlations in the data. If an EACD(1,1)
model is entertained, we obtain the model

xi = ψi εi , ψi = 0.0124 + 0.0411xi−1 + 0.9503ψi−1,

where all estimates are highly significant with a minimum t-ratio of 6.59. The ACF
of the residual series ε̂i = xi /ψ̂i shows some small, but significant, serial correlations
at lower-order lags. The model can be improved.

We entertain a WACD(1,2) model for the data and obtain the result

xi = ψi εi , ψi = 0.0128 + 0.0573xi−1 + 0.541ψi−1 + 0.393ψi−2, (6.41)

where {εi } is a sequence of independent and identically distributed random variates
that follow the standardized Weibull distribution with parameter α̂ = 1.234(0.004),
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Figure 6.11. Sample ACF of adjusted trading durations for Caterpillar stock from January 4

to January 8, 2010: (a) the adjusted durations and (b) innovations of a WACD(1,2) model.

where 0.005 is the estimated standard error. Standard errors of the estimates in
Equation (6.41) are 0.002, 0.004, 0.069, and 0.067, respectively. All t-ratios of the
estimates are greater than 5.9, indicating that the estimates are highly significant.
Figure 6.12 shows the time plot of ε̂i = xi /ψ̂i for the WACD(1,2) model in Equation
(6.41), and Figure 6.11b provides the sample ACF of ε̂i . The time plot shows a few
large outlying innovations and the ACF indicates that some minor serial correlations
remain in the data. The sample mean and standard deviation of ε̂i are 0.99 and 0.95,
respectively. The mean is close to 1, but the standard deviation is larger than that of a
Weibull distribution with α = 1.234. This is consistent with the outlying innovations
observed from the time plot. Overall, the fitted model describes the data reasonably
well, but it can be further improved.

In model (6.41), the estimated coefficients show γ̂1 + ω̂1 + ω̂2 ≈ 0.992, indicat-
ing certain persistence in the adjusted durations. The expected adjusted duration is
0.0128/(1 − 0.992) = 1.60 s, which is close to the sample mean 1.42 of the adjusted
durations. The estimated α of the standardized Weibull distribution is 1.234, which is
greater than 1. Thus, the conditional hazard function is monotonously increasing.

Finally, it is common in statistical modeling to see that more sophisticated models
are needed to adequately describe the data when the sample size is large. The analysis
can be simplified when a subsample is used. For the adjusted durations of the CAT
stock, we reanalyze the data using the first 1200 observations. In this subsample, a
WACD(1,1) model appears to be adequate. The fitted model is

xi = ψi εi , ψi = 0.162 + 0.068xi−1 + 0.788ψi−1,
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Figure 6.12. Time plot of innovations of a WACD(1,2) model fitted to adjusted trading

durations of Caterpillar stock from January 4 to January 8, 2010.

where εi follows a standardized Weibull distribution with parameter α = 1.478 (0.029),
where the number in parentheses is the standard error. The standard errors of the
coefficient estimates are 0.067, 0.019, and 0.071. Figure 6.13a shows the time plot
of the innovations ε̂i , whereas Figure 6.13b gives the ACF of ε̂i . From the plots,
the model seems to be adequate. As a matter of fact, the Ljung–Box statistics of ε̂i
gives Q(10) = 9.60(0.47) and Q(20) = 14.95(0.78), where the number in parentheses
denotes the p-value. For the ε2

i series, we obtain Q(10) = 5.69(0.84) and Q(20) =
10.38(0.96). These statistics confirm that the innovations of the WACD(1,1) model
have no serial correlations or conditional heteroscedasticity. �

Remark. Estimation of EACD models can be carried out using programs for ARCH
models with some minor modification (Engle and Russell, 1998). In this book, we use
a simple R script. �

R Demonstrations of Duration Models. Output edited.

> source("acd.R")
> m2=acd(adjdt,order=c(1,1),cond.dist="exp")
Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
omega 0.01247473 0.00189210 6.59305 4.3087e-11 ***
alpha 0.04106574 0.00273273 15.02735 < 2.22e-16 ***
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Figure 6.13. Model checking for a WACD(1,1) model fitted to the first 1200 observations

of adjusted trading durations of Caterpillar stock from January 4 to January 8, 2010: (a)

innovation series and (b) ACF of the innovations.

beta 0.95029295 0.00364684 260.57992 < 2.22e-16 ***
---
> names(m2)
[1] "estimates" "Hessian" "epsilon"
> m3=acd(adjdt,order=c(1,1),cond.dist="weibull")
> m5=acd(adjdt,order=c(1,2),cond.dist="weibull")
Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
omega 0.01275520 0.00183458 6.95264 3.5849e-12 ***
alpha 0.05729856 0.00359740 15.92776 < 2.22e-16 ***
beta1 0.54141462 0.06912212 7.83273 4.8850e-15 ***
beta2 0.39333491 0.06667232 5.89952 3.6455e-09 ***
shape 1.23368806 0.00450529 273.83124 < 2.22e-16 ***
---
> ep5=m5$epsilon
> acf(ep5,ylim=c(-0.05,0.25))

> adt1=adjdt[1:1200] % Subsample
> plot(adt1,type=‘l’)
> m6=acd(adt1,order=c(1,1),cond.dist="weibull")
Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
omega 0.1616787 0.0670298 2.41204 0.0158635 *
alpha 0.0677561 0.0194223 3.48857 0.0004856 ***
beta 0.7881004 0.0710153 11.09761 < 2.22e-16 ***
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shape 1.4783354 0.0292454 50.54928 < 2.22e-16 ***
---
> ep6=m6$epsilon
> Box.test(ep6,lag=10,type=‘Ljung’)

Box-Ljung test
data: ep6
X-squared = 9.6035, df = 10, p-value = 0.4759
> Box.test(ep6,lag=20,type=‘Ljung’)
> Box.test(ep6^2,lag=10,type=‘Ljung’)
> Box.test(ep6^2,lag=20,type=‘Ljung’)
> par(mfcol=c(2,1))
> plot(ep6,type=‘l’,xlab=‘index’,ylab=‘epsilon_t’)
> acf(ep6,ylim=c(-0.1,.25))

One can apply the ACD model to study asset volatility (Chou, 2005). Here volatil-
ity is measured by the daily price range (or range of log prices). Similar to duration,
daily price range is nonnegative and can be used as an alternative approach to quantify
price variability. Tsay (2009) and Tsay (2010, Chapter 6) apply ACD models with
intervention analysis to investigate the impact on stock volatility of switching from
tick size to the decimal system on January 29, 2001.

6.6 REALIZED VOLATILITY

In this section, we return to the topic of using high frequency data to compute volatility.
In Equation (4.45), if we further assume that the sample mean r t is 0, then we have
σ̂ 2

m ≈ ∑n
i=1 r2

t ,i . In this case, the cumulative sum of squares of daily log returns in a
month is used as an estimate of monthly volatility. This concept has been generalized
to estimate daily volatility of an asset using intraday log returns. Let rt be the daily
log return of an asset. Suppose that there are n equally spaced intraday log returns
available such that rt = ∑n

i=1 rt ,i . The quantity

RVt =
n∑

i=1

r2
t ,i

is called the realized volatility of rt (Andersen et al., 2001a,b).
Mathematically, realized volatility assumes that the log price xt of a security

follows the model

dxt = μt dt + σt dwt , (6.42)

where wt is a standard Brownian motion and μt and σt are the drift and diffusion
of xt , respectively. This stochastic diffusion equation is known as an Ito process . See
Tsay (2010, Chapter 6) for more information. The quantity of interest is the integrated
variance

∫ T
0 σ 2

t dt for some time interval [0, T ]. For instance, in studying realized
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volatility, T is often chosen to be 1 day. For most securities, the drift μt is close to
0 when the time interval is small so that Equation (6.42) reduces to dxt = σt dwt . In
discrete-time, the model says that the log return of the security within a small time
interval � can be approximated by σtεt , where εt is a normal random variable with
mean 0 and variance �. Now, divide the interval [0, T ] into n = T/� subintervals
and compute the log return rt = xt� − x(t−1)� for t = 1, . . . , n . Thus, rt is the intraday
log return for time t th interval of length �. A natural way to estimate the integrated
variance is based on the following statistical property:

lim
n→∞

n∑
t=1

r2
t →p

∫ T

0
σ 2

t dt , (6.43)

where →p denotes convergence in probability. Since n → ∞ is equivalent to � → 0,
the prior equation states that one can use the quadratic variation to estimate the
integrated variance, and the estimate should be more accurate if the time interval � is
small. Thus, realized volatility is an integrated volatility. Note that it is not necessary
to have equally spaced intraday log returns for Equation (6.43) to hold. As long as
the length of the largest interval approaches 0, the result holds.

Equation (6.43) implies that one would use as many intraday returns as possible
to compute the daily realized volatility. In practice, this means using the tick-by-tick
log returns, because they are the intraday log returns at the finest possible intervals.
However, the observed returns are contaminated by market microstructure noises, say
ro

t = rt + et . Two well-known examples of the microstructure noises are the bid–ask
bounce and nonsynchronous trading (Chapter 6). Such noises introduce bias when
one uses the empirical quadratic variation to estimate the integrated variance of the
underlying asset price. As a matter of fact, the bias becomes more serious as the
time interval � becomes finer. One can even show that, under certain assumptions,∑n

t=1(r
o
t )2/(2n) converges to the variance of the noise et instead of the integrated

variance of xt (Zhang et al., 2001; Bandi and Russell, 2008). Consequently, methods
must be sought to obtain bias-corrected estimate of the realized volatility.

To demonstrate, we consider the tick-by-tick data for the Caterpillar stock from
January 4 to May 28, 2010. The data are from the Trade-and-Quote (TAQ) database
of the New York Stock Exchange. The numbers of trading days for the 5 months are
19, 19, 23, 21, and 20, respectively. Thus, we analyze tick-by-tick data for 102 trading
days. For simplicity, we only employ transactions in the normal trading hours from
9:30 AM to 4:00 PM Eastern time. Figure 6.14 shows the time plot of daily numbers
of transactions in the sample. It is clear that the trading intensity varies markedly from
one day to another. Figure 6.15 shows the intraday 5-min log returns of the stock for
May 2010, whereas Figure 6.16 gives the histogram of the returns. To compute the log
returns, we follow the convention using the last transaction price in the interval as the
stock price for that interval. As expected, the returns vary around 0, show volatility
clustering, and have heavy tails. As will be seen later, the extreme returns have a
substantial impact on realized volatility.

Turn to realized volatility. We compute the realized volatility using different time
intervals. In particular, time interval of length “0” denotes the case in which we simply



310 HIGH FREQUENCY FINANCIAL DATA

0 20 40 60 80 100

40
,0

00
60

,0
00

80
,0

00
10

0,
00

0
14

0,
00

0

Days

n-
tr

ad
e

*

*
**

*

*

*

*

*

*

**

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*
*

*
*

*
**

*

*

*

*
*
*

*

**

*

**
*

*

****
*
*

*

*
*

*
**

**

**
*
**

*

*

*

*

*

*

**

**

*

*

*
*

*
*

**

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*
*

Figure 6.14. Time plot of the daily number of transactions in the normal trading hours of

Caterpillar stock from January 04, 2010 to May 28, 2010.

employ the sum of squared log returns of consecutive trades in each trading day. This
means that we treat the observed sequence as the true sequence of transactions when
there are multiple transactions within a second. We employ this extreme case to
highlight the impact of microstructure noises on realized volatility. Figure 6.17 shows
the time plot of realized volatility of Caterpillar stock with different time intervals.
The volatility is annualized and the time intervals used are 0, 1, 2, 3, 4, 5, 10, 15,
20 and 30 min. Therefore, we consider 10 estimates for the realized volatility. The
solid line represents the realized volatility with time interval 0. From the plot, we
make the following observations. First, realized volatility for the case of zero time
interval differs substantially from those of other time intervals. In fact, the solid line
is truncated. This is in agreement with the theory mentioned earlier as the realized
volatility in this particular case is estimating 2n × Var(et ), which is unbounded as n
increases. Second, the realized volatility varies substantially from one time interval to
another. On the other hand, they do show similar characteristics. Thus, the plot raises
the important issue of how to obtain a reasonable realized volatility.

To gain further insight, we obtain the boxplot for the 10 realized volatility series
(Fig. 6.18). The plot ignores the serial dependence of the volatility, but it provides
a summary for the size of the realized volatility. Figure 6.19 shows the mean and
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Figure 6.15. Time plot of intraday 5-min log returns for Caterpillar stock from May 03 to May

28, 2010. The last transaction price of each interval is used.

median of the realized volatility for each time interval. These plots indicate that an
interval of 3–5 min might work well for the Caterpillar stock considered.

Remark. We use R scripts to obtain various realized volatility series. These scripts
are available on the book web page. �

R Demonstration

> source("hfanal.R")
% Process January data
> da=read.table("taq-cat-jan2010.txt",header=T)
> m1=hfanal(da,1)
> names(m1)
[1] "returns" "Ytot" "realized" "ntrad"
> Ytot=m1$Ytot
> Ntrad=m1$ntrad
> Rv=cbind(Ytot,m1$realized)
> m2=hfanal(da,2)
> Rv=cbind(Rv,m2$realized)
> m3=hfanal(da,3)
> Rv=cbind(Rv,m3$realized)
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Figure 6.16. Histogram of intraday 5-min log returns for Caterpillar stock from May 03 to

May 28, 2010. The last transaction price of each interval is used.

> m4=hfanal(da,4)
> Rv=cbind(Rv,m4$realized)
> m5=hfanal(da,5)
> Rv=cbind(Rv,m5$realized)
> m6=hfanal(da,10)
> Rv=cbind(Rv,m6$realized)
> m7=hfanal(da,15)
> Rv=cbind(Rv,m7$realized)
> m8=hfanal(da,20)
> Rv=cbind(Rv,m8$realized)
> m9=hfanal(da,30)
> Rv=cbind(Rv,m9$realized)
%% Process February data
> da=read.table("taq-cat-feb2010.txt",header=T)
> m1=hfanal(da,1)
> Rv2=cbind(m1$Ytot,m1$realized)
> Ytot=c(Ytot,m1$Ytot)
> Ntrad=c(Ntrad,m1$ntrad)
> m2=hfanal(da,2)
> Rv2=cbind(Rv2,m2$realized)
> m3=hfanal(da,3)
> Rv2=cbind(Rv2,m3$realized)
> m4=hfanal(da,4)
> Rv2=cbind(Rv2,m4$realized)
> m5=hfanal(da,5)
> Rv2=cbind(Rv2,m5$realized)
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Figure 6.17. Realized volatilities for Caterpillar stock from January 04, 2010 to May 28, 2010.

The solid line is based on tick-by-tick log returns, whereas the dashed lines are based on log

returns for time intervals of 1, 2, 3, 4, 5, 10, 15, 20, and 30 min.

> m6=hfanal(da,10)
> Rv2=cbind(Rv2,m6$realized)
> m7=hfanal(da,15)
> Rv2=cbind(Rv2,m7$realized)
> m8=hfanal(da,20)
> Rv2=cbind(Rv2,m8$realized)
> m9=hfanal(da,30)
> Rv2=cbind(Rv2,m9$realized)

> RV=rbind(Rv,Rv2) % Combine Jan and Feb results
% repeat the same process for March, April and May data.

6.6.1 Handling Microstructure Noises

There are two methods commonly used in the literature to handle the microstructure
noises in calculating realized volatility. The first method is used to obtain an optimal
sampling interval (Zhang et al., 2001; Bandi and Russell, 2008). The idea here is to
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Figure 6.18. Boxplot of realized volatilities for Caterpillar stock from January 04, 2010 to May

28, 2010. The realized volatilities are obtained by intraday log returns of intervals with length

0, 1, 2, 3, 4, 5, 10, 15, 20, and 30 min, where 0 denotes the result obtained using tick-by-tick

log returns.

minimize the mean square of errors in estimating the integrated volatility. It represents
a compromise between accuracy in approximating the true realized volatility and
reducing the bias caused by microstructure noises. Roughly speaking, one uses the
tick-by-tick log returns to estimate the variance of the noise, then obtains an optimal
sampling interval to minimize the mean square of errors in estimation. The resulting
optimal interval varies from stock to stock and period to period. For heavily traded
stocks, the optimal interval is often between 1 to 5 min.

The second method to calculating realized volatility is to use subsampling and to
correct the bias. This results in a two-scale procedure (Zhang et al., 2001). We use a
simple example to introduce the idea of subsampling. Suppose that we are interested
in 5-min intraday log returns of an asset. Typically, we use the time intervals (9:30,
9:35], (9.35, 9:40], . . . to construct a series of 5-min log returns. In this way, we
drop many transaction prices of the asset because only the last transaction price of
each interval is used. One can also use the intervals (9:31, 9:36], (9.36, 9:41], . . . to
compute another series of 5-min log returns. This process continues until we use the
intervals (9:34,9:39], (9.39,9:44], . . . to obtain yet another series of 5-min log returns.
In this manner, we have five time series of 5-min intraday log returns, each of them
can be used to construct a realized volatility for the asset. A simple average of these
five estimates should provide a more accurate realized volatility. As a matter of fact,
we can use other increment, instead of 1 min, to construct more sequences of 5-min
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Figure 6.19. Mean and median of realized volatilities for Caterpillar stock from January 04,

2010 to May 28, 2010. The realized volatilities ate obtained by intraday log returns of intervals

with length 0, 1, 2, 3, 4, 5, 10, 15, 20, and 30 min, where 0 denotes the result obtained using

tick-by-tick log returns.

time intervals, for example, (9:30:30, 9:35:30], (9:35:30, 9:40:30], . . . In practice, a
choice must be made to keep the procedure simple. Here we use 1 min as the time
increment to construct sequences of time intervals.

Mathematically, the two-scale estimator of realized volatility for the t th trading
day of a security can be written as

RVt =
(

1 − n

n

)−1 (
RVave

t − n

n
RV0,t

)
,

where

RVave
t = 1

m

m∑
i=1

ni∑
j=1

r2
i ,j , RV0,t =

n∑
j=1

r2
j ,

where m is the number of subsamplings, ri ,j is the j th log returns of the i th subsam-
pling, ni is the number of log returns for the i th subsampling, n is the average of
{ni }, rj is the log return of the j th transaction (from the (j − 1)th transaction) of the
security, and n is the total number of log returns in day t . The quantity nRV0,t/n is
the bias correction to remove the impact of microstructure noises and the average is
used to improve the estimation because it uses more transaction prices.

Figure 6.20 shows the two-scale estimator of realized volatility for the Caterpillar
stock from January 04 to May 28, 2010. Here we use 5-min log returns and the
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Figure 6.20. Realized volatilities for the Caterpillar stock from January 04 to May 28, 2010.

The solid line denotes the two-scale estimator using 5-min log returns and 1-min increment in

subsampling. The dashed line is the result using the usual 5-min log return series.

increment in subsampling is 1 min. Thus, RVave
t is based on five realized volatilities.

All volatilities are annualized. Also shown in the plot in dashed line is the realized
volatility based on the usual 5-min log returns. There are some differences between
the two estimates. Figure 6.21 is the scatter plot between the two-scale estimator
and the average estimator, that is, RVave

t . The two estimates are close. Thus, in this
particular instance, the bias correction only has a small effect in estimating the realized
volatility.

R Demonstration

> source("hf2ts.R")
> da=read.table("taq-cat-may2010.txt",header=T)
> m5=hf2ts(da,int=5)
> names(m5)
[1] "Ytot" "realized" "ave.RV" "ntrad"
> da=read.table("taq-cat-apr2010.txt",header=T)
> m4=hf2ts(da,int=5)
> da=read.table("taq-cat-mar2010.txt",header=T)
> m3=hf2ts(da,int=5)
> da=read.table("taq-cat-feb2010.txt",header=T)
> m2=hf2ts(da,int=5)
> da=read.table("taq-cat-jan2010.txt",header=T)
> m1=hf2ts(da,int=5)
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Figure 6.21. Scatter plot of realized volatilities for the Caterpillar stock from January 04 to

May 28, 2010. The horizontal axis denotes the two-scale estimator and the y-axis denotes the

average estimator of five 5-min log return series.

% Combine the results
> Ytot=c(m1$Ytot,m2$Ytot,m3$Ytot,m4$Ytot,m5$Ytot) % Consecutive trades
% 2-scale method (Zhang et al. method)
> RV=c(m1$realized,m2$realized,m3$realized,m4$realized,m5$realized)
% average of 5-m RV.
> mRV=c(m1$ave.RV,m2$ave.RV,m3$ave.RV,m4$ave.RV,m5$ave.RV)

6.6.2 Discussion

Once a realized volatility series is obtained, it can be analyzed to produce volatility
forecasts. We use the realized volatility series constructed by 5-min intraday log returns
of the Caterpillar stock from January 04 to May 28, 2010 to demonstrate the analysis.
The realized volatility and its log series are shown in Figure 6.22, with the log series
in the panel (b). Let Vt be the realized volatility. Applying the modeling process of
Chapter 2, we obtain the AR(1) model

(1 − 0.6527B)(Vt − 0.2794) = at , σ 2
a = 0.008742, (6.44)

where the standard errors of the estimates are 0.0741 and 0.0262, respectively. AIC of
the model is −187.42. Model checking shows that this simple AR(1) model is adequate
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Figure 6.22. Time plots of realized volatility and its log series for Caterpillar stock from

January 04 to May 28, 2010. The realized volatility is based on 5-min intraday log returns and

shown in panel (a).

TABLE 6.6. Forecasts For Realized Volatility Of Caterpillar Stock. The Sampling Period is
From January 04 to May 28, 2010, and The Realized Volatility Is Constructed Using 5-min
Intraday Log Returns. The Forecast Origin Is May 28, 2010

Model 1-step 2-step 3-step 4-step 5-step

AR(1) 0.3154 0.3029 0.2947 0.2894 0.2860
AR(6) 0.3569 0.3381 0.3443 0.3447 0.3058
ARIMA(0,1,3) 0.3163 0.3753 0.3623 0.3639 0.3654

(Fig. 6.23). We then use the model to produce 1-step to 5-step ahead forecasts. The
results are given in Table 6.6.

Alternatively, we also consider the log series vt of the realized volatility. Two
models are found to fit the data well. The first one is an AR(6) model:

(1 − 0.6296B − 0.2032B6)(vt + 1.3507) = at , σ 2
a = 0.07161, (6.45)

where the standard errors of the estimates are 0.0705, 0.0726, and 0.1437, respectively.
The AIC of the model is 29.62. Model checking, not shown, also indicates that the
model is adequate. The second model for the log volatility series is

(1 − B)vt = (1 − 0.4287B − 0.2426B3)at , σ 2
a = 0.07662, (6.46)
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Figure 6.23. Model checking plots for an AR(1) model fitted to the realized volatility of

Caterpillar stock from January 04 to May 28, 2010.

where the standard errors of the MA coefficients are 0.0906 and 0.0729, respectively.
The AIC of the model is 33.67. Again, model checking, not shown, fails to indi-
cate any model inadequacy. If AIC criterion is used to compare the models, then
one would select the AR(6) model in Equation (6.45) for the log volatility series.
We include the ARIMA(0,1,3) model here because limited experience indicates that
ln(RVt ) often follows approximately a Gaussian ARIMA(0,1,q) model. Note that to
obtain volatility forecasts for the models in Equations (6.45) and (6.46), we make use
of the relationship between log-normal and normal distributions. In other words, we
use E (Vt ) = exp[E (vt ) + 0.5Var(vt )]. The resulting volatility forecasts are also given
in Table 6.6. Finally, one cannot compare the AIC or other information criterion
between models for Vt and models for vt . On the other hand, as realized volatility can
be directly calculated from the data, one can use backtesting to compare the models.
We do not perform backtesting here because there are only 102 data points in the series.

Advantages of realized volatility include simplicity and making use of intraday
returns. On the other hand, realized volatility for stock returns does not include the
overnight volatility of the asset. By overnight volatility, we mean the volatility of the
asset when the market is close, for example, from the close of day t − 1 to the open
of day t . In some instances, this overnight volatility could be substantial. For instance,
most quarterly earnings are announced after the market close, and earning surprises
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tend to have marked impact on stock volatility. Consequently, realized volatility is
likely to underestimate the true volatility for stock returns. A possible solution to
this problem is to use a weighted average between overnight variance and realized
volatility (Hansen and Lunde, 2005). However, the square of overnight return is not an
accurate estimate of overnight volatility. Our limited experience shows that overnight
returns appear to be small for index returns or foreign exchange returns. Finally, in
a series of recent articles, Barndorff-Nielsen and Shephard (2004) have used high
frequency returns to study bipower variations of an asset return and developed some
methods to detect jumps in volatility.

APPENDIX A: SOME PROBABILITY DISTRIBUTIONS

Exponential Distribution. A random variable X has an exponential distribu-
tion with parameter β > 0 if its probability density function (pdf) is given by

f (x |β) =
⎧⎨
⎩

1

β
e−x/β if x ≥ 0,

0 otherwise.

Denoting such a distribution by X ∼ exp(β), we have E (X ) = β and Var(X ) = β2.
The cumulative distribution function (CDF) of X is

F (x |β) =
{

0 if x < 0,

1 − e−x/β if x ≥ 0.

When β = 1, X is said to have a standard exponential distribution.

Gamma Function. For κ > 0, the gamma function �(κ) is defined by

�(κ) =
∫ ∞

0
x κ−1e−x dx .

The most important properties of the gamma function are:

1. For any κ > 1, �(κ) = (κ − 1)�(κ − 1).

2. For any positive integer m , �(m) = (m − 1)!.

3. �( 1
2 ) = √

π.

The integration

�(y |κ) =
∫ y

0
x κ−1e−x dx , y > 0

is an incomplete gamma function. Its values have been tabulated in the literature.
Computer programs are now available to evaluate the incomplete gamma function.
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Gamma Distribution. A random variable X has a gamma distribution with
parameter κ and β (κ > 0, β > 0) if its pdf is given by

f (x |κ , β) =
⎧⎨
⎩

1

βκ�(κ)
xκ−1e−x/β if x ≥ 0,

0 otherwise.

By changing variable y = x/β, one can easily obtain the moments of X :

E (X m) =
∫ ∞

0
x m f (x |κ , β)dx = 1

βκ�(κ)

∫ ∞

0
x κ+m−1e−x/βdx

= βm

�(κ)

∫ ∞

0
yκ+m−1e−y dy = βm�(κ + m)

�(κ)
.

In particular, the mean and variance of X are E (X ) = κβ and Var(X ) = κβ2. When
β = 1, the distribution is called a standard gamma distribution with parameter κ .
We use the notation G ∼ gamma(κ) to denote that G follows a standard gamma
distribution with parameter κ . The moments of G are

E (Gm) = �(κ + m)

�(κ)
, m > 0. (6.47)

Weibull Distribution. A random variable X has a Weibull distribution with
parameters α and β (α > 0, β > 0) if its pdf is given by

f (x |α, β) =
⎧⎨
⎩

α

βα
xα−1e−(x/β)α

if x ≥ 0,

0 if x < 0,

where β and α are the scale and shape parameters, respectively, of the distribution.
The mean and variance of X are

E (X ) = β�

(
1 + 1

α

)
, Var(X ) = β2

{
�

(
1 + 2

α

)
−

[
�

(
1 + 1

α

)]2
}

,

respectively, and the CDF of X is

F (x |α, β) =
{

0 if x < 0,

1 − e−(x/β)α

if x ≥ 0.

When α = 1, the Weibull distribution reduces to an exponential distribution.
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Define Y = X/[β�(1 + 1/α)]. We have E (Y ) = 1 and the pdf of Y is

f (y |α) =
{

α
[
�

(
1 + 1

α

)]α
yα−1 exp

{
− [

�
(
1 + 1

α

)
y
]α}

if y ≥ 0,

0 otherwise,
(6.48)

where the scale parameter β disappears because of standardization. The CDF of the
standardized Weibull distribution is

F (y |α) =

⎧⎪⎨
⎪⎩

0 if y < 0,

1 − exp

{
−

[
�

(
1 + 1

α

)
y

]α}
if y > 0,

and we have E (Y ) = 1 and Var(Y ) = �(1 + 2/α)/[�(1 + 1/α)]2 − 1. For a duration
model with Weibull innovations, the pdf in Equation (6.48) is used in the maximum
likelihood estimation.

Generalized Gamma Distribution. A random variable X has a generalized
gamma distribution with parameter α, β, κ (α > 0, β > 0, and κ > 0) if its pdf is
given by

f (x |α, β, κ) =
⎧⎨
⎩

αx κα−1

βκα�(κ)
exp

[
−

(
x

β

)α]
if x ≥ 0,

0 otherwise,

where β is a scale parameter, and α and κ are shape parameters. This distribution can
be written as

G =
(

X

β

)α

,

where G is a standard Gamma random variable with parameter κ . The pdf of X can
be obtained from that of G by the technique of changing variables. Similarly, the
moments of X can be obtained from that of G in Equation (6.47) by

E (X m) = E [(βG1/α)m ] = βm E (Gm/α) = βm �(κ + m/α)

�(κ)
= βm�(κ + m/α)

�(κ)
.

When κ = 1, the generalized gamma distribution reduces to that of a Weibull
distribution. Thus, the exponential and Weibull distributions are special cases of the
generalized gamma distribution.

The expectation of a generalized gamma distribution is E (X ) = β�(κ +
1/α)/�(κ). In duration models, we need a distribution with unit expectation.
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Therefore, defining a random variable Y = λX/β, where λ = �(κ)/�(κ + 1/α), we
have E (Y ) = 1 and the pdf of Y is

f (y |α, κ) =
⎧⎨
⎩

αyκα−1

λκα�(κ)
exp

[
−

(y

λ

)α]
if y > 0,

0 otherwise,
(6.49)

where again the scale parameter β disappears and λ = �(κ)/�(κ + 1
α
).

APPENDIX B: HAZARD FUNCTION

A useful concept in modeling duration is the hazard function implied by a distribution
function. For a random variable X , the survival function is defined as

S (x) ≡ P(X > x) = 1 − P(X ≤ x) = 1 − CDF(x), x > 0,

which gives the probability that a subject, which follows the distribution of X , survives
at the time x . The hazard function (or intensity function) of X is then defined by

h(x) = f (x)

S (x)
, (6.50)

where f (.) and S (.) are the pdf and survival function of X , respectively.

Example. For the Weibull distribution with parameters α and β, the survival function
and hazard function are

S (x |α, β) = exp

[
−

(
x

β

)α]
, h(x |α, β) = α

βα
xα−1, x > 0.

�

In particular, when α = 1, we have h(x |β) = 1/β. Therefore, for an exponential
distribution, the hazard function is constant. For a Weibull distribution, the hazard is
a monotone function. If α > 1, then the hazard function is monotonously increasing.
If α < 1, the hazard function is monotonously decreasing. For the generalized gamma
distribution, the survival function and, hence, the hazard function involve the incom-
plete gamma function. Yet the hazard function may exhibit various patterns, including
U shape or inverted U shape. Thus, the generalized gamma distribution provides a
flexible approach to modeling the duration of stock transactions.

For the standardized Weibull distribution, the survival and hazard functions are

S (y |α) = exp

{
−

[
�

(
1 + 1

α

)
y

]α}
, h(y |α) = α

[
�

(
1 + 1

α

)]α

yα−1, y > 0.
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EXERCISES

1. Let rt be the log return of an asset at time t . Assume that {rt } is a Gaussian
white noise series with mean 0.02 and variance 0.04. Suppose that the prob-
ability of a trade at each time point is 50% and is independent of rt . Denote
the observed return by ro

t . Is ro
t serially correlated? If yes, calculate the first

three lags of autocorrelations of ro
t .

2. Let Pt be the observed market price of an asset, which is related to the funda-
mental value of the asset P∗

t via Equation (6.9). Assume that �P∗
t = P∗

t − P∗
t−1

forms a Gaussian white noise series with mean 0 and variance 1.0. Suppose
that the bid–ask spread is 2 cents. What is the lag-1 autocorrelation of the
price change series �Pt = Pt − Pt−1 when the tick size is 1 cent.

3. The file taq-aa-t-june72010.txt contains the tick-by-tick trading data
of Alcoa stock on June 7, 2010. It has seven columns, namely, date, hour,
minute, second, price, and volume. Focus on the transactions that occurred
during the normal hours.
(a) Obtain the nonzero time durations between trades. What are sample mean

and variance of the series.

(b) Remove the diurnal pattern using

f (ti ) = exp[d(ti )], d(ti ) = β0 + β1f1(ti ) + β2f 2
1 (ti ) + β3f3(ti ),

where f1(ti ) is defined as in Equation (6.31) and f3(ti ) = ln(ti ). Write down
the fitted model for diurnal pattern.

(c) Build an EACD model for the adjusted duration and check the fitted model.

(d) Build a WACD model for the adjusted duration and check the fitted model.

(e) Compare the prior two duration models.

4. Consider, again, the transactions data of Alcoa stock on June 7, 2010. Focus
on the transactions occurred during the normal trading hours.

(a) Obtain the price change series and its histogram.

(b) Divide the price changes into seven categories as those in Table 6.3. What
is the percentage of transactions with no price change?

(c) Fit an ordered probit model similar to that of Example 6.1 to the categorical
price changes. Write down the fitted model.

(d) Fit an ADS model to the categorical price changes similar to Example 6.2.
Write down the fitted model.

5. Consider the questions of the prior problem, but using the transactions data of
Alcoa stock on June 8, 2010. The data are in the file
taq-aa-t-june82010.txt.

6. The file taq-aa-t-june7t112010.txt contains the transactions data of
Alcoa stock from June 7 to June 11, 2010. Focus on the transactions during
the normal trading hours. Consider the number of transactions within a 5-min
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time interval. Denote the resulting series by xt . Is there any diurnal pattern in
xt ? Why?

7. Consider the tick-by-tick transactions data of the stock of Starbucks from July
25 to July 29, 2011. The data are in taq-sbux-jul2011.txt. Focus on
trades occurred in the normal trading hours.

(a) Obtain the intraday 5-min log returns of the stock. Plot the histogram of
the returns.

(b) Obtain daily realized volatility of the stock using 5-min intraday log
returns.

(c) Obtain daily realized volatility of the stock using 1-min intraday log returns
using subsampling method with the average estimator.

(d) Obtain daily realized volatility of the stock using 1-min intraday log returns
using subsampling method with the two-scale estimator.
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7

VALUE AT RISK

One of the lessons we learned from repeated financial crises is that risk is real and
should be an integral part of any financial decision. Assessing financial risk thus
becomes important in asset pricing and allocation. In this chapter, we introduce some
risk measures for quantifying financial risk, discuss statistical methods for calculating
financial risk and the theory behind them, and demonstrate risk assessment via real
examples. Similar to other topics discussed in the previous chapters, our goal here is
to provide readers with basic knowledge about financial risk and risk management.
We use real examples in the demonstration, and all computations are carried out
step-by-step with R.

Following the framework of Basel Accords, financial risk can be classified into
three categories. They are market risk, credit risk, and operational risk. If necessary,
one can treat liquidity (or refinancing) risk as an additional category. Market risk
is concerned with loss arising from changes in stock prices, interest rates, foreign
exchange rates, and commodity prices. It includes equity risk, interest rate risk, cur-
rency risk, commodity risk, and volatility risk. Because equity prices and interest
rates are widely available and of high quality, market risk is the most well-studied
and understood financial risk. It is also the main focus of this chapter.

An Introduction to Analysis of Financial Data with R, First Edition. Ruey S. Tsay.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Credit risk is also known as default risk or counterparty risk . It occurs when
a borrower fails to make a payment as promised. It covers consumer credit risk,
concentration risk, securitization, and credit derivatives. Because credit data are harder
to obtain and are available mainly to large rating agencies, credit risk has been less
investigated. However, it has attracted much attention in recent years because of the
failure of several large financial institutions in the United States, for example, Lehman
Brothers, Merry Lynch, Wachovia, and Washington Mutual, and the increases in use
of structured financial products such as credit default swaps (CDS) and collateralized
debt obligations (CDO). According to Basel-II, operational risk is concerned with risk
of loss resulting from inadequate or failed internal processes, people and systems, or
external events. Legal and political risks are examples of operational risk. Because
it covers a wide range of risks and often involves people and processes, operational
risk is the least studied and understood financial risk. However, it has started to gain
attention in recent years as more data have been collected and become available.

As financial products and trading become more and more sophisticated and the
financial markets around the world become more integrated, understanding financial
risk becomes more important. Much research is needed to provide insight into financial
risk in today’s global economy. Nevertheless, there exist some fundamental properties
about financial risk and some general concepts of risk management. The goal of this
chapter is therefore to provide readers with the basic concept to quantify and assess
risk of a financial position. In particular, we provide a comprehensive treatment of
market risk.

Even though we focus on market risk, some of the concepts and methods discussed
apply equally well to credit and operational risks. For instance, RiskMetrics of J.P.
Morgan for assessing value at risk (VaR) has been generalized to CreditMetrics for
evaluating credit risk.

7.1 RISK MEASURE AND COHERENCE

Loss of a given financial position for a specified holding period can be represented
by a random variable, say X . For example, suppose that one bought 100 shares of
Stock A at $50 per share today. Then, the potential loss of the position for tomorrow
is X = $100(Y − 50), where Y is the tomorrow’s share price of the stock. Here, the
holding period is a trading day and X is a random variable because Y is unknown
today. We shall use random variables to describe financial losses. All inferences
concerning the loss of a financial position are based on the distribution of the
associated loss random variable.

As the distributions of losses are unknown and it is hard to adequately estimate
them based on the available data, we often employ some summary statistics to quantify
the loss distributions in real applications. A risk measure is simply one of these
summary statistics. In short, a risk measure is a mapping from the loss random variable
X into the real line. It provides an estimate of the potential risk. Keep in mind,
however, a risk measure usually does not provide a complete description of the possible
losses, because it is just a summary statistic. The goal then is to select a risk measure
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that is widely applicable and can best describe the losses we often encounter in
finance.

To begin with, a sensible risk measure in finance must be consistent with the basic
theory in finance. Let η be a risk measure. We say that η is coherent if it satisfies the
following four conditions for any two loss random variables X and Y :

1. Subadditivity : η(X + Y ) ≤ η(X ) + η(Y ).

2. Monotonicity : If X ≤ Y for all possible outcomes, then η(X ) ≤ η(Y ).

3. Positive homogeneity : For any positive constant c, η(cX ) = cη(X ).

4. Translation invariance: For any positive constant c, η(X + c) = η(X ) + c.

See Artzner et al. (1997) for more details.
The subadditivity states that the risk measure for a combined position should not

be greater than risks of the two positions treated separately. In finance, this is related
to diversification. The risk of a diversified portfolio should not be greater than risks
of the individual components. Thus, subadditivity simply expresses the fact that there
should be some diversification benefit from combining risks. Without the subadditivity,
companies would find it to be advantageous to divide into smaller companies.

The monotonicity is easily understandable. It simply states that if one financial
position always has greater losses than another position under all circumstances, then
its risk measure should always be greater. The positive homogeneity also has important
implications. First, it states that doubling a financial position should also double its
risk. Second, it implies that the risk does not depend on the currency in which the
risk is measured. The translation invariance means that there is no additional risk if
there is no additional uncertainty, because in statistics adding a constant to a random
variable does not affect its variability.

There are many coherent risk measures available. In what follows, we shall intro-
duce some of the commonly used risk measures.

7.1.1 Value at Risk (VaR)

VaR is perhaps the most well-known risk measure. It is a single estimate of the
amount by which an institution’s position in a risk category could decline because of
general market movements during a given holding period; see Duffie and Pan (1997)
and Jorion (2006) for a general exposition of VaR. The measure can be used by
financial institutions to assess their risks or by a regulatory committee to set margin
requirements. In either case, VaR is used to ensure that the financial institutions can
still be in business after a catastrophic event.

In what follows, we define VaR using the loss random variable of a financial
position for a given holding period. Suppose that at the time index t we are interested
in the risk of a financial position for the next � periods. Let Lt (�) be the loss random
variable of the position. The loss is typically measured in dollars. Let Vt be the
value of the position at time t . Then, Lt (�) is either a positive or negative function
of Vt+� − Vt , depending on the financial position being long or short. Denote the
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cumulative distribution function (CDF) of Lt (�) by F�(x). Here, we drop the subscript
t from F�(x). However, it is understood that F�(x) depends on the time index t .

As big loss occurs less frequently, we assess loss using a small probability, for
example, 5% or 1% or 0.1%. Denote the probability by p. We define the VaR of the
financial position over the time horizon � with given probability p as

VaR1−p = inf{x |F�(x) ≥ 1 − p} (7.1)

where inf denotes the smallest real number x satisfying the condition. From the defi-
nition, F�(VaR1−p) ≥ 1 − p, which says

Pr[Lt (�) ≤ VaR1−p] ≥ 1 − p.

Thus, with probability (1 − p), the potential loss encountered by the holder of the
financial position from time t to time t + � is less than or equal to VaR1−p .

Using the property Pr[Lt (�) ≤ x ] = 1 − Pr[Lt (�)> x ], we have

Pr[Lt (�)> VaR1−p] ≤ p.

Therefore, the probability that the position holder would encounter a loss greater than
VaR1−p over the period from t to t + � is at most p.

The previous definition shows that VaR is concerned with the upper tail probability
of the loss CDF F�(x). For a univariate CDF F�(x) and a given probability q satisfying
0 < q < 1, the quantity

xq = inf{x |F�(x) ≥ q}

is called the qth quantile of F�(x). If the random variable Lt (�) of F�(x) is continuous,
then q = Pr[Lt (�) ≤ xq ]. Thus, letting q = 1 − p, we see that VaR is simply the
(1 − p)th quantile of the loss distribution, where p is a small tail probability. For
this reason, we used the subscript 1 − p in Equation (7.1) to define VaR. In the
statistical literature, the (1 − p)th quantile of a distribution is also referred to as the
100 (1 − p)th percentile of the distribution.

Figure 7.1 shows the VaR of a continuous loss random variable based on its
CDF. The upper horizontal line denotes the probability 1 − p so that the upper tail
probability is p. The VaR is then the X-coordinate of the vertical line, confirming that
VaR is just the (1 − p)th quantile of the loss distribution. Figure 7.2 shows the VaR
based on the probability density function (pdf) of a continuous loss random variable.
The area of the upper tail under the density is p. In statistics, this means∫ ∞

VaR
f (x)dx = p or equivalently

∫ VaR

−∞
f (x)dx = 1 − p,

where f (x) denotes the pdf of X and, for simplicity, we drop the subscript 1 − p from
VaR. Again, the prior equation says that VaR is the 100 (1 − p)th percentile of the
loss variable X .
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Discussion. Arguably, VaR has become the standard measure to quantify the
risk exposure of a financial institution. Its popularity arises because it has some good
properties. First, it is simple and easy to calculate for some well-known distributions.

Case 1: (Normal distribution). If the loss random variable X is normally dis-
tributed, say X ∼ N (μt , σ

2
t ), then

VaR1−p = μt + z1−pσt , (7.2)

where z1−p denotes the (1 − p)th quantile of the standard normal distribution
and the subscript t is used to signify that VaR is time varying. The quantile
can be obtained from the normal probability table or from any statistical soft-
ware package. For instance, z0.95 ≈ 1.645 and z0.99 ≈ 2.326. In R, one can use
qnorm(0.95) and qnorm(0.99) to obtain these two quantiles.

Case 2: (Student-t distribution). If the loss random variable X satisfies that Y =
(X − μt )/σt is a Student-t distribution with v degrees of freedom, then

VaR1−p = μt + t1−p,vσt , (7.3)

where t1−p,v is the (1 − p)th quantile of a Student-t distribution with v degrees
of freedom. For instance, for v = 5, we have t0.95,5 ≈ 2.015 and t0.99,5 ≈ 3.365.
In R, one can use the command qt(0.95,5) and qt(0.99,5) to obtain
these two quantiles.

Case 3: (Standardized Student-t distribution). The variance of the Student-t ran-
dom variable Y of Case 2 is v/(v − 2) provided that v > 2. In volatility
modeling, we may employ the standardized version of Y as innovations; see
Chapter 4. This is achieved by

Y ∗ = Y√
v/(v − 2)

= X − μt

σt

√
v/(v − 2)

.

Consequently, we have

VaR1−p = μt + t∗
1−p,vσt

√
v/(v − 2), (7.4)

where t∗
1−p,v is the (1 − p)th quantile of a standardized Student-t distribution

with v degrees of freedom. For instance, we have t∗
0.95,5 ≈ 1.561 and t∗

0.99,5 ≈
2.606. In R with package fGarch, one can use qstd(0.95,nu = 5) and
qstd(0.99,nu = 5) to obtain these two quantiles. It is easy to verify that
t∗
1−p,v

√
v/(v − 2) = t1−p,v .

Second, VaR is a coherent risk measure if the loss random variable is normally
distributed (or more generally, it follows a spherical distribution). To see this, we
assume, without of loss of generality, that the means of the two loss random variables
X and Y are zero so that X ∼ N (0, σ 2

x ) and Y ∼ N (0, σ 2
y ) and the (1 − p)th VaR
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are z1−pσx and z1−pσy , respectively. In this case, it is easy to see, from properties
of the normal distribution, that monotonicity, positive homogeneity, and translation
invariance hold. It remains to check the subadditivity of VaR. This can be seen as
follows:

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X , Y )

= σ 2
x + σ 2

y + 2ρσx σy

≤ σ 2
x + σ 2

y + 2σx σy

= (σx + σy)
2,

where ρ denotes the correlation between X and Y and we have ρ ≤ 1. Therefore,
σx+y ≤ σx + σy . This implies that z1−pσx+y ≤ z1−pσx + z1−pσy , or equivalently, VaR
of X + Y is less than or equal to the sum of VaR of X and VaR of Y . Consequently,
the subadditivity of VaR holds under the normality assumption.

VaR, however, is not a coherent risk measure in general. We give a simple coun-
terexample, which is similar to Example 3.13 of Klugman et al. (2008).

Example 7.1. Suppose the CDF F�(x) of a continuous loss random variable X satis-
fies the following probabilities:

F�(80) = 0.9215

F�(90) = 0.95

F�(100) = 0.97.

For p = 0.05, the VaR of X is 90 because 90 is the 0.95th quantile of X . We denote
this by VaRx

0.95 = 90. Now, define two loss random variables X1 and X2 by

X1 =
{

X , if X ≤ 100

0, if X > 100

and

X2 =
{

0, if X ≤ 100

X , if X > 100.

These two loss variables are simply truncated versions of X and we have X = X1 + X2.
As the total probability must be 1, the CDF F 1

� (X ) of X1 satisfies

F 1
� (80) = 0.9215/0.97 = 0.95

F 1
� (90) = 0.95/0.97 = 0.9794

F 1
� (100) = 0.97/0.97 = 1.
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The 0.95th quantile of X1 is 80. Therefore, VaR1
0.95 = 80, where the superscript 1 is

used to denote X1. On the other hand, Pr(X2 ≤ 0) = P(X ≤ 100) = 0.97. Therefore,
the 0.95th quantile of X2 is less than or equal to 0. We denote this by VaR2

0.95 ≤ 0.
Taking the sum, we have VaR1

0.95 + VaR2
0.95 ≤ 80.

In this particular instance, X = X1 + X2, yet VaRx
0.95 = 90 > VaR1

0.95 + VaR2
0.95.

Therefore, the subadditivity of VaR fails. �

Finally, VaR is simply a quantile with the upper tail probability p. It does not
describe the actual tail behavior of the loss random variable. One can easily construct
two loss random variables that share the same VaR for a given probability p but have
very different tail behavior. In this case, the actual risks of the two loss variables are
different even though they have the same VaR. To demonstrate, consider Figure 7.3 that
shows the density functions of two loss random variables. The two density functions
are identical for x ≤ VaR but different for x > VaR with the dash line indicating a
heavier upper tail. These two loss variables have the same VaR, but the one associated
with dash line has higher probabilities of bigger losses. This demonstration shows that
VaR is not a perfect risk measure.

7.1.2 Expected Shortfall

To overcome the drawbacks of VaR, a new risk measure, called expected shortfall
(ES), is introduced in financial econometrics. The measure, however, is not new in

−5 0 5 10

−0
.0

5
0.

00
0.

05
0.

10
0.

15

Loss

D
en

si
ty

VaR

Figure 7.3. Density functions of two loss random variables that have the same VaR but

different loss implications.



RISK MEASURE AND COHERENCE 335

the literature. It is called the tail value at risk (TVaR) in the actuarial science. Simply
put, ES is the expected loss of a financial position after a catastrophic event. Consider
the loss random variable X of a financial position with holding period �. Denote the
pdf and CDF of X by f (x) and F (x), respectively. For a given tail probability p, let
VaR be the value at risk of X . Here, for simplicity, we drop the subscript 1 − p from
VaR. Then, ES of X is defined as

ES1−p = E (X |X > VaR) =
∫ ∞

VaR xf (x)dx

Pr(X > VaR)
. (7.5)

From the definition, ES is the expected loss of X given that X exceeds its VaR. For
this reason, ES is also called the conditional value at risk (CVaR) in the literature. It
is called TVaR because it focuses on the upper tail behavior of the loss distribution.

For simplicity, assume that X is continuous. We shall use change of variable in
integration to rewrite Equation (7.5). Let u = F (x) for VaR ≤ x ≤ ∞. Then, we have
du = f (x)dx , F (VaR) = 1 − p, F (∞) = 1, and x = F−1(u) = VaRu . Equation (7.5)
can then be rewritten as

ES1−p =
∫ 1

1−p VaRu du

p
.

Thus, ES can be seen to average all VaRu for 1 − p ≤ u ≤ 1. This averaging feature
enables ES to better reflect the tail behavior of the loss random variable X than VaR.
As a matter of fact, it can be shown that ES is a coherent risk measure. For the two
loss densities in Figure 7.3, their ESs are different with the dashed line corresponding
to a higher value.

Closed-form solutions for ES are also available for some loss distributions.

Case 1: (Normal distribution). Suppose that the loss random variable X is
distributed as N (μt , σ

2
t ). In this case, ES is simply the expectation of a

left-truncated normal random variable for which a closed-form solution is
available:

ES1−p = μt + f (z1−p)

p
σt , (7.6)

where f (z ) is the pdf of a standard normal random variable, z1−p is the
(1 − p)th quantile of f (z ), and p is a small tail probability. This result can
also be obtained by integration by parts. For p = 0.05, we have z1−p ≈ 1.645
and f (1.645) ≈ 0.103. In R, these quantities are qnorm(0.95) and
dnorm(qnorm(0.95)), respectively.

Case 2: (Student-t distribution with v degrees of freedom). If the loss random
variable X satisfies that Y = (X − μt )/σt is a Student-t distribution with v
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degrees of freedom, then we have

ES1−p = μt + σt

fv(x1−p)

p

(
v + x2

1−p

v − 1

)
, (7.7)

where fv(x) denotes the pdf of a Student-t distribution with v degrees of
freedom and x1−p is the (1 − p)th quantile of fv(x). This result can be
obtained by direct integration. For p = 0.01 and v = 5, we have x1−p ≈ 3.365
and f5(x1−p) ≈ 0.0109. In R, these two quantities are qt(0.99,5) and
dt(qt(0.99,5),5), respectively.

Case 3: (Standardized Student-t distribution with v degrees of freedom). Suppose
the loss random variable X satisfies that

Y ∗ = X − μt

σt

√
v/(v − 2)

,

follows a standardized Student-t distribution with v degrees of freedom, where
v > 2. In this case, we have

ES1−p = μt + σt

√
v/(v − 2)

f ∗
v (x∗

1−p)

p

(
(v − 2) + [x∗

1−p ]2

v − 1

)
, (7.8)

where f ∗
v (x) is the pdf of a Standardized Student-t distribution with v degrees

of freedom and x ∗
1−p is the (1 − p)th quantile of f ∗

v (x). For p = 0.01 and
v = 5, we have x∗

1−p ≈ 2.606 and f ∗
v (x∗

1−p) ≈ 0.014. In R with the package
fGarch, we can obtain these quantities using qstd(0.99,nu = 5) and
dstd(qstd(0.99,nu = 5),nu = 5), respectively.

7.2 REMARKS ON CALCULATING RISK MEASURES

Before introducing methods for calculating VaR and ES, we discuss some practical
issues in assessing financial risk.

Calculation of VaR involves several factors:

1. The probability of interest p, such as p = 0.01 for risk management and p =
0.001 in stress testing. The choice of p is somewhat arbitrary.

2. The time horizon �. It might be set by a regulatory committee, such as 1 day
or 10 days for market risk and 1 year or 5 years for credit risk.

3. The frequency of the data, which might not be the same as the time horizon �.
Daily observations are often used in market risk analysis. Monthly or quarterly
data are common for credit risk modeling.

4. The CDF F�(x) or its quantiles of the loss random variable.

5. The amount of the financial position or the mark-to-market value of the
portfolio.
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Among these factors, the CDF F�(x) is the focus of econometric modeling. Different
methods for estimating the CDF give rise to different approaches to VaR and ES
calculation.

The definition of VaR in Equation (7.1) is in dollar amount. As log returns corre-
spond approximately to percentage changes in value of a financial asset, we use log
returns rt in data analysis. For a long position, loss occurs when rt is negative. On
the contrary, for a short position, loss occurs when rt is positive. Therefore, in this
chapter, we define the loss random variable as

xt =
{

rt , if the position is short,

−rt , if the position is long.
(7.9)

The VaR calculated from the upper quantile of the loss distribution given information
available at time t is therefore in percentage. The dollar amount of VaR is then
the cash value of the financial position times the VaR of the loss variable. That is,
VaR = Value × VaR(of xt ). If necessary, one can also use the approximation VaR =
Value × [exp(VaR of xt ) − 1].

VaR is a prediction concerning possible loss of a portfolio over a holding period.
It should be computed using the predictive distribution of the loss variable over the
specified holding period. For example, the VaR for a 1-day horizon of a portfolio using
daily returns rt should be calculated using the predictive distribution of rt+1 given
information available at time t . From a statistical viewpoint, predictive distribution
takes into account the parameter uncertainty of the entertained econometric model.
However, predictive distribution is hard to obtain in general, and most of the available
methods for VaR calculation ignore the effects of parameter uncertainty. Furthermore,
when the entertained model is uncertain, the VaR should also take into consideration
the model uncertainty. In short, because of some simplicity considerations, the com-
monly used methods for calculating VaR and ES overlook both the parameter and
model uncertainties.

7.3 RISKMETRICS

J. P. Morgan developed the RiskMetricsTM methodology to VaR calculation; see
Longerstaey and More (1995). In its simple form, RiskMetrics assumes that the
continuously compounded daily return rt of a portfolio follows a conditional normal
distribution. Let xt denote the daily loss random variable defined in Equation (7.9)
and denote the information set available at time t − 1 by Ft−1. RiskMetrics assumes
that xt |Ft−1 ∼ N (0, σ 2

t ), where σ 2
t is the conditional variance of xt and it evolves

over time according to the simple model:

σ 2
t = ασ 2

t−1 + (1 − α)x 2
t−1, 1 > α > 0. (7.10)

Therefore, the method assumes that the logarithm of the daily price, pt = ln(Pt ), of
the portfolio satisfies the difference equation pt − pt−1 = at , where at = σtεt is an
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IGARCH(1,1) process without drift. The value of α is often in the interval (0.9, 1)
with a typical value of 0.94.

A good property of such a special random-walk IGARCH model is that the
conditional distribution of a multiperiod loss is easily available. Specifically, for a
k -period horizon, the loss variable from time t + 1 to time t + k (inclusive) is xt [k ]
= xt+1 + · · · + xt+k−1 + xt+k . We use the square bracket [k ] to denote the k holding
periods. Under the special IGARCH(1,1) model in Equation (7.10), the conditional
distribution xt [k ]|Ft is normal with mean zero and variance σ 2

t [k ], where σ 2
t [k ] can

be computed using the forecasting method discussed in Chapter 4. Using the indepen-
dence assumption of εt and model (Eq. 7.10), we have

σ 2
t [k ] = Var(xt [k ]|Ft ) =

k∑
i=1

Var(at+i |Ft ),

where Var(at+i |Ft ) = E (σ 2
t+i |Ft ) can be obtained recursively. Using xt−1 = at−1 =

σt−1εt−1, we can rewrite the volatility equation of the IGARCH(1,1) model in Equation
(7.10) as

σ 2
t = σ 2

t−1 + (1 − α)σ 2
t−1(ε

2
t−1 − 1) for all t .

In particular, we have

σ 2
t+i = σ 2

t+i−1 + (1 − α)σ 2
t+i−1(ε

2
t+i−1 − 1) for i = 2, · · · , k .

As E (ε2
t+i−1 − 1|Ft ) = 0 for i ≥ 2, the prior equation shows that

E (σ 2
t+i |Ft ) = E (σ 2

t+i−1|Ft ) for i = 2, · · · , k . (7.11)

For the 1-step ahead volatility forecast, Equation (7.10) shows that σ 2
t+1 = ασ 2

t +
(1 − α)x 2

t . Therefore, Equation (7.11) shows that Var(xt+i |Ft ) = σ 2
t+1 for i ≥ 1 and,

hence, σ 2
t [k ] = kσ 2

t+1. The results show that xt [k ]|Ft ∼ N (0, kσ 2
t+1). Consequently,

under the special IGARCH(1,1) model in Equation (7.10), the conditional variance of
xt [k ] is proportional to the time horizon k . The conditional standard deviation of a
k -period horizon loss variable is then

√
kσt+1, which is

√
k times σt+1.

Given a tail probability, RiskMetrics uses the result xt [k ]|Ft ∼ N (0, kσ 2
t+1) to

calculate VaR of the loss random variable. If the tail probability is p = 0.05, then
VaR = 1.65σt+1 for the next trading day (Section 7.1.1). For the next k trading days,
VaR[k ] = 1.65

√
kσt+1, which is the 95th percentile of N (0, kσ 2

t+1). Similarly, if the
tail probability is p = 0.01, then VaR = 2.326σt+1 for the next trading day and VaR[k ]
= 2.326

√
kσt+1 for the next k trading days.

Consider the case of p = 0.01. The VaR for the portfolio under RiskMetrics is
then

VaR = Amount of position × 2.326σt+1,
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for the next trading day and that of a k -day horizon is

VaR(k) = Amount of position × 2.326
√

kσt+1,

where the argument (k) of VaR is used to denote the time horizon and the portfolio
value is measured in dollars. Consequently, under RiskMetrics, we have

VaR(k) =
√

k × VaR.

This is referred to as the square root of time rule in VaR calculation under RiskMetrics.
If the loss variables are in percentages, then the 1% VaR for the next trading day

is VaR = Amount of position × 2.326σt+1/100, where σt+1 is the volatility of the
loss variable.

Note that because RiskMetrics assumes log returns are normally distributed with
mean zero, the loss function is symmetric and VaR are the same for long and short
financial positions.

We can also use the results of Section 7.1.2 to compute ES under RiskMetrics.
In particular, we have

ES0.95 = 0.103

0.05
σt+1 = 2.063σt+1, and ES0.99 = 0.0267

0.01
σt+1 = 2.67σt+1,

for the next trading day. For the next k -trading days, we can apply the square root of
time rule.

Example 7.2. Figure 7.4 shows the time plot of daily log returns of IBM stock
from January 2, 2001 to December 31, 2010 for 2515 observations. We apply the
RiskMetrics approach to calculate VaR and ES for a long position of 1 million on
the stock. In this case, the loss variable is the negative daily log return. To begin
with, we estimate the special IGARCH(1,1) model of Equation (7.10) to obtain an
estimate of the parameter α. For IBM daily returns in percentages, we have α̂ =
0.943(0.007), where the number in parentheses is the estimated standard error. In
addition, we have x2515 = −0.061 and σ̂2515 = 0.734 from the data and the fitted
model. The 1-step ahead prediction of volatility is then σ̂2516 = 0.7133 obtained from
σ̂ 2

2516 = 0.943(0.734)2 + (1 − 0.943)(−0.061)2. Consequently, using RiskMetrics, we
have

VaR0.95 = 1.173, VaR0.99 = 1.659, ES0.95 = 1.471, and ES0.99 = 1.901.

Using these results, we can obtain the VaR and ES for the long position. For
instance,

VaR0.95 = $1, 000, 000
1.173

100
= $11, 730 and VaR0.99 = $16, 590.
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Figure 7.4. Daily log returns of IBM stock from January 2, 2001 to December 31, 2010.

Finally, suppose that we are interested in the risk for holding the position for the next
15 trading days. Then, by the square root of time rule, we have

VaR0.95(15) =
√

15 × $11730 = $45, 430 ES0.95(15) =
√

15 × $14710 = $56, 972.

In this example, we use an R script RMfit to estimate the special IGARCH(1,1)
model in Equation (7.10) and to calculate risk measures. The R script is available on
the book web. �

R Demonstration

> da=read.table("d-ibm-0110.txt",header=T)
> head(da)

date return
1 20010102 -0.002206
.....

> ibm=log(da[,2]+1)*100
> source("RMfit.R")
> mm=RMfit(ibm)
Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
alpha 0.942857 0.007172 131.464 < 2.22e-16 ***
---
Volatility prediction:
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Orig Vpred
[1,] 2515 0.713303

Risk measure based on RiskMetrics:
prob VaR ES

[1,] 0.950 1.173279 1.471339
[2,] 0.990 1.659391 1.901105
[3,] 0.999 2.204272 2.401756

Example 7.3. Consider the daily log returns of dollar–euro exchange rate from Jan-
uary 5, 2001 to October 28, 2011 for 2721 observations. The exchange rate and its log
return are shown in Figure 7.5. The exchange rates are downloaded from the Federal
Reserve Bank at St. Louis, and we calculate log returns by taking the difference of
the log exchange rate. For simplicity, assume that we hold 1 Euro and are interested
in the associated risks for the next 1 period and 10 periods.

Similar to Example 7.2, we start with fitting the special IGARCH(1,1) model in
Equation (7.10). The result is

σ 2
t = 0.9698σ 2

t−1 + (1 − 0.9698)r2
t .

The standard error of the coefficient is 0.004. Using the fitted model, the VaR
and ES for the next trading day after October 28, 2011 are

VaR0.95 = 0.014, VaR0.99 = 0.0199, ES0.95 = 0.0177, and ES0.99 = 0.0229.
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Figure 7.5. Daily log returns of dollar–euro exchange rate from January 4, 2001 to October

28, 2011.



342 VALUE AT RISK

Applying the square root of time rule, we have

VaR0.95(10) = 0.0446 and ES0.95(10) = 0.0559.
�

R Demonstration

> da1=read.table("d-useu0111.txt",header=T)
> head(da1)
year mm dd rate

1 2001 1 4 0.9448
......

> par(mfcol=c(2,1))
> rate=da1$rate; plot(rate,type=‘l’)
> rt=diff(log(rate)); plot(rt,type=‘l’)
> m2=RMfit(rt)
Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
alpha 0.96975 0.003813 254.35 < 2.22e-16 ***
---
Volatility prediction:

Orig Vpred
[1,] 2721 0.008574549

Risk measure based on RiskMetrics:
prob VaR ES

[1,] 0.950 0.01410388 0.01768683
[2,] 0.990 0.01994738 0.02285301
[3,] 0.999 0.02649735 0.02887128

7.3.1 Discussion

An advantage of RiskMetrics is simplicity. It is easy to understand and apply. Another
advantage is that it makes risk more transparent in the financial markets. However, as
security returns tend to have heavy tails (or fat tails), the normality assumption used
often results in underestimation of VaR. Other approaches to VaR calculation avoid
making such an assumption.

The square root of time rule is a consequence of the special model used by
RiskMetrics. If either the zero mean assumption or the special IGARCH(1,1) model
assumption of the log returns fails, then the rule is invalid. Consider the simple model

rt = μ + at , at = σtεt , μ 	= 0,

σ 2
t = ασ 2

t−1 + (1 − α)a2
t−1,

where {εt } is a standard Gaussian white noise series. The assumption that μ 	= 0
holds for returns of many heavily traded stocks on the NYSE; see Chapter 1. For
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this simple model, the distribution of rt+1 given Ft is N (μ, σ 2
t+1). The 95% quantile

used to calculate the 1-period horizon VaR becomes μ + 1.65σt+1. For a k -period
horizon, the distribution of rt [k ] given Ft is N (kμ, kσ 2

t+1), where as before rt [k ] =
rt+1 + · · · + rt+k . The 95% quantile used in the k -period horizon VaR calculation
is kμ + 1.65

√
kσt+1 = √

k(
√

kμ + 1.65σt+1). Consequently, VaR(k) 	= √
k × VaR

when the mean return is not zero. It is also easy to show that the rule fails when the
volatility model of the return is not an IGARCH(1,1) model without drift.

7.3.2 Multiple Positions

In some applications, an investor may hold multiple positions and needs to compute
the overall VaR of the positions. RiskMetrics adopts a simple approach for doing such
a calculation under the assumption that daily log returns of each position follow a
random-walk IGARCH(1,1) model. The additional quantities needed are the cross-
correlation coefficients between the returns. Consider the case of two positions. Let
VaR1 and VaR2 be the VaR for the two positions and ρ12 be the correlation coefficient
between the two returns − that is, ρ12 = Cov(r1t , r2t )/[Var(r1t )Var(r2t )]

0.5. Then, the
overall VaR of the investor is

VaR =
√

VaR2
1 + VaR2

2 + 2ρ12VaR1VaR2.

The generalization of VaR to a position consisting of m instruments is straight-
forward as

VaR =
√√√√ m∑

i=1

VaR2
i + 2

m∑
i<j

ρij VaRi VaRj ,

where ρij is the cross-correlation coefficient between returns of the i th and j th instru-
ments and VaRi is the VaR of the i th instrument.

The prior formula is obtained using the assumption that the joint distribution of
the log returns of assets involved in the portfolio is multivariate normal with mean
zero and covariance matrix Σt+1. Under such an assumption, the log return of the
portfolio is normal with mean zero and finite variance; see Appendix B of Chapter 8
of Tsay (2010) for properties of multivariate normal variables.

Example 7.4. Consider a simple portfolio consisting of 40% in AAA bonds and 60%
on IBM stock. The market value of the portfolio is U.S. $ 1 million. To measure the
bond returns, we employ the daily log return of the Bank of America Merrill Lynch
U.S. Corp AAA total return index from January 2, 2001 to December 31, 2010. The
data of bond index are obtained from the Federal Reserve Bank at St. Louis. The
original bond index has 2612 observations. On the other hand, as given in Example
7.2, the daily stock returns only have 2515 observations within the same period. For
simplicity, we remove those bond indices that correspond to no stock returns. The
resulting bond index is then used to calculate the daily bond returns.
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Figure 7.6. Daily log returns of bond index from January 2, 2001 to December 31, 2010. The

bond index is the Bank of America Merrill Lynch U.S. Corp AAA total return index.

Figure 7.6 shows the log returns of the bond index. Similar to stock returns, bond
returns also exhibit the pattern of volatility clustering and weak stationarity. Applying
the RiskMetrics method, we obtain the following IGARCH(1,1) model for the log
returns of bond index:

σ 2
t = 0.9577σ 2

t−1 + (1 − 0.9577)r2
t−1,

where rt denotes the log bond return at time t and the standard error of the coefficient
is 0.006. On the basis of this model, we have

VaR0.95 = 0.00705 and VaR0.99 = 0.00997.

Recall, from Example 7.2, that for the daily log returns of IBM stock, we have

VaR0.95 = 0.01173 and VaR0.99 = 0.01659.

Next, consider the VaR of the portfolio. We use p = 0.05 in the demonstration.
The sample correlation coefficient of the log returns between IBM stock and AAA
bond index is −0.2215. Consequently, for the portfolio, we have

VaRe
0.95 = 0.01173 × 0.6 = 0.00704 and VaRb

0.95 = 0.00705 × 0.4 = 0.00282,
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where the superscripts e and b denote equity and bond returns, respectively. The
VaR0.95 for the portfolio is then

VaR0.95 =
√

(VaRe
0.95)

2 + (VaRb
0.95)

2 + 2(−0.2215)VaRe
0.95VaRb

0.95

= 0.006978.

For this particular instance, we see that with tail probability p = 0.05, the VaR of the
portfolio is less than the VaR of each component. More specifically, with $1 million
investment, we have

1. Equity market only: VaR0.95 = $11,730.

2. Bond market only: VaR0.95 = $7050.

3. Portfolio (60-40): VaR0.95 = $6978.

This result is expected because VaR is a coherent risk measure under the normality
assumption. The example, thus, demonstrates the value of diversification. �

7.4 AN ECONOMETRIC APPROACH

A general approach to VaR and ES calculation is to use the time series econometric
models of Chapters 2 and 4. For a log return series, the time series models of Chapter 2
can be used for the mean equation, and the conditional heteroscedastic models of
Chapter 4 are used to handle the volatility. For simplicity, we use GARCH models in
our discussion and refer to the approach as an econometric approach to VaR and ES
calculation. Other volatility models can also be used.

Consider the loss variable xt of a financial position. A general time series model
for xt can be written as

xt = φ0 +
p∑

i=1

φi xt−i + at −
q∑

j=1

θj at−j , (7.12)

at = σtεt ,

σ 2
t = α0 +

u∑
i=1

αi a
2
t−i +

v∑
j=1

βj σ
2
t−j . (7.13)

Equations (7.12) and (7.13) are the mean and volatility equations, respectively, for
xt . These two equations can be used to obtain 1-step ahead forecasts of the condi-
tional mean and conditional variance of xt assuming that the parameters are known.
Specifically, we have

x̂t (1) = φ0 +
p∑

i=1

φi xt+1−i −
q∑

j=1

θj at+1−j ,
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σ̂ 2
t (1) = α0 +

u∑
i=1

αi a
2
t+1−i +

v∑
j=1

βj σ
2
t+1−j .

If one further assumes that εt follows a Gaussian or a standardized Student-t distri-
bution, then the results of Sections 7.1.1 and 7.1.2 can be used to calculate VaR and
ES for a given tail probability.

Example 7.5. Consider again the daily log returns of IBM stock employed in
Example 7.2. We use two volatility models to calculate VaR and ES for a long
position of $1 million dollars. The two econometric models are reasonable based on
the modeling techniques of Chapters 2 and 4.

Because the position is long, the loss variable is xt = −rt , where rt is the daily
log return. In this example, all calculations use the last data point T = 2515 as the
date of making inference.

Model 1: Here, we employ a GARCH(1,1) model with Gaussian innovations. The
fitted model is

xt = −6.01 × 10−4 + at , at = σtεt , εt ∼ N (0, 1)

σ 2
t = 4.378 × 10−6 + 0.101a2

t−1 + 0.884σ 2
t−1.

Except for the normality assumption, model checking statistics discussed in Chapter 4
show that this model is adequate in describing the mean and volatility of the loss
variable. All coefficient estimates are statistically significant at the usual 5% level;
see the attached R output. The 1-step ahead predictions of the mean and volatility
of the loss variable xt at T = 2515 are −6.01 × 10−4 and 7.82 × 10−3, respectively.
Consequently, we have

VaR0.95 = 0.01227, ES0.95 = 0.01554,

VaR0.99 = 0.01760, ES0.99 = 0.02025.

These results can then be used to calculate the risk measure of the financial position.
For instance, VaR0.95 = $12, 270 and ES095 = $15, 540 for the next trading day.

Model 2: To handle the heavy tails of xt , we employ a GARCH(1,1) model with
standardized Student-t innovations. The fitted model is

xt = −4.113 × 10−4 + at , at = σtεt , εt ∼ t∗
5.751

σ 2
t = 1.922 × 10−6 + 0.0645a2

t−1 + 0.9286σ 2
t−1.

Except for the constant of the mean equation, all coefficient estimates are significant
at the usual 5% level. The fitted degrees of freedom are 5.751 confirming the heavy
tails of the loss variable xt . Again, model checking statistics confirm the adequacy of
this model. The 1-step ahead predictions of the model for the mean and volatility at
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T = 2515 are −4.113 × 10−4 and 0.00801, respectively. Applying the results of risk
measures discussed before, we obtain that, for xt ,

VaR0.95 = 0.01545, ES0.95 = 0.02185, VaR0.99 = 0.02542, ES0.99 = 0.03295.

Consequently, using the Student-t innovations, the risk measures for the financial
position are VaR0.95 = $15, 450 and ES0.95 = $21, 850.

From the results of Models 1 and 2, we see that the heavy-tailed innovations
give rise to higher risk measures. This is understandable because Model 2 provides
a better description of the tail behavior of xt . As the normality assumption for xt is
rejected by the data, this simple example shows that the VaR under normality is likely
to underestimate the true risk. �

R Demonstration. Output edited.

> da=read.table("d-ibm-0110.txt",header=T)
> xt=-log(da$return+1) % calculate negative log returns.
> library(fGarch)
> m1=garchFit(∼garch(1,1),data=xt,trace=F)
> m1
Title: GARCH Modelling
Call: garch Fit(formula = ∼garch(1, 1), data = xt, trace = F)

Mean and Variance Equation:
data ∼ garch(1, 1) [data = xt]

Conditional Distribution: norm

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu -6.010e-04 2.393e-04 -2.511 0.012044 *
omega 4.378e-06 1.160e-06 3.774 0.000161 ***
alpha1 1.011e-01 1.851e-02 5.463 4.67e-08 ***
beta1 8.841e-01 1.991e-02 44.413 < 2e-16 ***
---
> predict(m1,3)

meanForecast meanError standardDeviation
1 -0.0006009667 0.007824302 0.007824302
2 -0.0006009667 0.008043298 0.008043298
3 -0.0006009667 0.008253382 0.008253382
> source("RMeasure.R")
> m11=RMeasure(-.000601,.0078243)

Risk Measures for selected probabilities:
prob VaR ES

[1,] 0.950 0.01226883 0.01553828
[2,] 0.990 0.01760104 0.02025244
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[3,] 0.999 0.02357790 0.02574412
>
> m2=garchFit(∼garch(1,1),data=xt,trace=F,cond.dist="std")
> m2
Title: GARCH Modelling
Call: garch-
Fit(formula =∼garch(1,1), data=xt,cond.dist="std", trace=F)

Mean and Variance Equation:
data ∼ garch(1, 1) [data = xt]

Conditional Distribution: std

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu -4.113e-04 2.254e-04 -1.824 0.06811 .
omega 1.922e-06 7.417e-07 2.592 0.00954 **
alpha1 6.448e-02 1.323e-02 4.874 1.09e-06 ***
beta1 9.286e-01 1.407e-02 65.993 < 2e-16 ***
shape 5.751e+00 6.080e-01 9.459 < 2e-16 ***
---
> predict(m2,3)

meanForecast meanError standardDeviation
1 -0.0004112738 0.008100872 0.008100872
2 -0.0004112738 0.008191119 0.008191119
3 -0.0004112738 0.008279772 0.008279772
> m22=RMeasure(-.0004113,.0081009,cond.dist="std",df=5.751)

Risk Measures for selected probabilities:
prob VaR ES

[1,] 0.950 0.01545311 0.02184843
[2,] 0.990 0.02542061 0.03294803
[3,] 0.999 0.04289786 0.05332908

7.4.1 Multiple Periods

Suppose that at the time index h we compute the k -horizon risk measures for a
financial position with loss variable xt . In this case, the variable of interest is the
k -period cumulative loss at the forecast origin h , that is, xh [k ] = xh+1 + · · · + xh+k .
If the loss variable xt follows the time series model in Equations (7.12) and (7.13),
then the conditional mean and variance of xh [k ] given the information set Fh can be
obtained by the forecasting methods discussed in Chapters 2 and 4.

Expected Loss and Forecast Error. The conditional mean E (xh [k ]|Fh) can be
obtained by the forecasting method of ARMA models in Chapter 2. Specifically, we
have

x̂h[k ] = xh(1) + · · · + xh(k),
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where xh(�) is the �-step ahead forecast of the loss at the forecast origin h . These
forecasts can be computed recursively as discussed in Chapter 2. Using the MA
representation

xt = μ + at + ψ1at−1 + ψ2at−2 + · · ·

of the ARMA model in Equation (7.12), we can write the �-step ahead forecast error
at the forecast origin h as

eh(�) = xh+� − xh(�) = ah+� + ψ1ah+�−1 + · · · + ψ�−1ah+1;

see Equation (2.34) and the associated forecast error. The forecast error of the expected
k -period return x̂h [k ] is the sum of 1-step to k -step forecast errors of xt at the forecast
origin h and can be written as

eh [k ] = eh(1) + eh(2) + · · · + eh(k)

= ah+1 + (ah+2 + ψ1ah+1) + · · · +
k−1∑
i=0

ψi ah+k−i

= ah+k + (1 + ψ1)ah+k−1 + · · · +
(

k−1∑
i=0

ψi

)
ah+1, (7.14)

where ψ0 = 1.

Expected Volatility. The volatility forecast of the k -period loss variable at the
forecast origin h is the conditional variance of eh[k ] given Fh . Using the independent
assumption of εt+i for i = 1, . . . , k , where at+i = σt+iεt+i , we have

Vh(eh [k ]) = Vh(ah+k ) + (1 + ψ1)
2Vh(ah+k−1) + · · · +

(
k−1∑
i=0

ψi

)2

Vh(ah+1)

= σ 2
h (k) + (1 + ψ1)

2σ 2
h (k − 1) + · · · +

(
k−1∑
i=0

ψi

)2

σ 2
h (1), (7.15)

where Vh(z ) denotes the conditional variance of z given Fh and σ 2
h (�) is the �-step

ahead volatility forecast at the forecast origin h . If the volatility model is the GARCH
model in Equation (7.13), then these volatility forecasts can be obtained recursively
by the methods discussed in Chapter 4.

As an illustration, consider the special time series model

xt = μ + at , at = σtεt ,

σ 2
t = α0 + α1a2

t−1 + β1σ
2
t−1.
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Then, we have ψi = 0 for all i > 0. The point forecast of the cumulative k -period loss
at the forecast origin h is x̂h [k ] = kμ and the associated forecast error is

eh [k ] = ah+k + ah+k−1 + · · · + ah+1.

Consequently, the volatility forecast for the k -period loss at the forecast origin h is

Var(eh[k ]|Fh) =
k∑

�=1

σ 2
h (�).

Using the forecasting method of GARCH(1,1) models in Chapter 4, we have

σ 2
h (1) = α0 + α1a2

h + β1σ
2
h ,

σ 2
h (�) = α0 + (α1 + β1)σ

2
h (� − 1), � = 2, . . . , k . (7.16)

Using Equation (7.16), we obtain that for the case of ψi = 0 for i > 0,

Var(eh[k ]|Fh) = α0

1 − φ

[
k − 1 − φk

1 − φ

]
+ 1 − φk

1 − φ
σ 2

h (1), (7.17)

where φ = α1 + β1 < 1. If ψi 	= 0 for some i > 0, then one should use the general
formula of Var(eh [k ]|Fh ) in Equation (7.15). If εt is Gaussian, then the conditional
distribution of xh [k ] given Fh is normal with mean kμ and variance Var(eh [k ]|Fh). The
quantiles needed in risk-measure calculation are readily available. If the conditional
distribution of at is not Gaussian (e.g., a Student-t or generalized error distribution),
simulation can be used to obtain the multiperiod VaR.

Example 7.5 (continued). Consider the Gaussian GARCH(1,1) model of Example
7.5 for the daily loss variable of IBM stock. That is, consider Model 1 of the example.
Suppose that we are interested in the risk measure of a 15-day holding period starting
at the forecast origin 2515 (i.e., December 31, 2010). We can use the fitted model
to compute the conditional mean and variance for the 15-day cumulative loss via
x2515[15] = ∑15

i=1 x2515+i given F2515. The conditional mean is −0.009015 and the
conditional variance is 0.001261, which is obtained by the recursion in Equation
(7.16). Thus, we have x2515[15] ∼ N (−0.009015, 0.001261). From which, we can
easily calculate the risk measures. For instance,

VaR0.95(15) = 0.04939, ES0.95(15) = 0.06423.

For the financial position, these results give

VaR0.95(15) = $49, 390, ES0.95(15) = $64, 230.
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On the other hand, applying the square root of time rule to the 1-holding period
VaR, we have

√
15 × VaR0.95 = $47,366. Thus, this example demonstrates that the

square root of time rule does not apply in general to risk measures based on econo-
metric models.

Recall that in Example 7.2 we calculated the risk measures for the position using
the RiskMetrics methodology and obtained VaR0.95(15) = $45, 430 and ES0.95(15) =
$56, 972. These quantities are smaller than those obtained by the econometric approach
even under the Gaussian innovations. Thus, different methods for calculating risk
measures often lead to different results. Care must be exercised in selecting a proper
method to assess risk in risk management. �

R Demonstration. Multi-period risk measures

> M1=predict(m1,15) % Model m1 is defined in the output of Example 7.5.
> names(M1)
[1] "meanForecast" "meanError" "standardDeviation"
> mf=M1$meanForecast
> merr=M1$meanError
> pmean=sum(mf)
> pvar=sum(merr^2)
> pstd=sqrt(pvar)
> pmean
[1] -0.009014501
> pvar
[1] 0.001260837
> pstd
[1] 0.03550827
> M11=RMeasure(pmean,pstd)
Risk Measures for selected probabilities:

prob VaR ES
[1,] 0.950 0.04939141 0.06422887
[2,] 0.990 0.07359009 0.08562265
[3,] 0.999 0.10071431 0.11054505

Example 7.5 (continued). Consider next the calculation of multiperiod VaR and ES
for the position on IBM stock using a GARCH(1,1) model with standardized Student-t
innovations. As a linear combination of k standardized Student-t distributions with
v degrees of freedom is not a standardized Student-t distribution with v degrees of
freedom, we use GARCH simulation to compute multiperiod VaR and ES. Here, the
fitted model is Model 2 of Example 7.5 so that we have μ = −4.113 × 10−4, (α0, α1)

= (1.922 × 10−6, 0.06448), and β = 0.9286. In addition, from the fitted model, we
have σ2515 = 0.008282, x2515 = −6.138 × 10−4, and v = 5.751. These initial values
enable us to simulate x2516 + · · · + x2530 many times so that we have an empirical dis-
tribution of the loss variable for the next 15 trading days. Specifically, our simulation
starts with

σ 2
2516 = 1.922 × 10−6 + 0.06448(x2515 − μ)2 + σ 2

2515
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a2516 = σ2516 × ε2516, ε2516 ∼ t∗
5.751

x2516 = −4.113 × 10−3 + a2516,

where ε∗
5.751 is a random draw from the standardized Student-t distribution with 5.751

degrees of freedom, which is obtained by the command rstd in the package fGarch.
We then advance the time index by 1 repeatedly to simulate x2517, . . . , x2530. The sum
of these 15 realizations provides an estimate of the loss for the next 15 trading days.
This procedure is repeated for many times, say 30,000 iterations, so that we have
30,000 estimates of the loss for the next 15 trading days. These estimates are, in
turn, used to obtain an empirical distribution of the loss variable. From the empirical
distribution, we can obtain VaR and ES. �

In practice, we use an R script SimGarcht, available on the book web, to
perform the simulation. See the attached R demonstration. With 30,000 iterations, we
obtain

VaR0.95(15) = $47, 977, ES0.95(15) = $67, 136.

For this particular instance, the VaR0.95(15) is slightly lower than that of Gaussian
GARCH(1,1) model, but the ES is higher, showing the effect of heavy tail.

R Demonstration for Simulating Student-t GARCH(1,1) model.

> source("SimGarcht.R")
> vol=volatility(m2)
> a1=c(1.922*10^(-6),0.06448); b1=0.9286; mu=-4.113*10^(-4)
> ini=c(ibm[2515],vol[2515])
> mm=SimGarcht(h=15,mu=mu,alpha=a1,b1=b1,df=5.751,ini=ini,nter=30000)
> rr=mm$rtn
> mean(rr)
[1] -0.006051321
> quantile(rr,c(0.95,0.99)) % Obtain VaR

95% 99%
0.04797729 0.07839338
> idx=c(1:30000)[rr > 0.04797729] % Compute ES for p = 0.05
> mean(rr[idx])
[1] 0.06713603
> idx=c(1:30000)[rr > 0.07839338] % Compute ES for p = 0.01
> mean(rr[idx])
[1] 0.09739639

7.5 QUANTILE ESTIMATION

Quantile estimation provides a nonparametric approach to VaR calculation. It makes
no specific distributional assumption on the loss variable of a portfolio except that
the distribution continues to hold within the prediction period. There are two types of
quantile methods. The first method is to use empirical quantile directly and the second
method uses quantile regression.
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7.5.1 Quantile and Order Statistics

Assuming that the distribution of the loss variable xt in the prediction period is the
same as that in the sample period, one can use the empirical quantile of xt to calculate
VaR and ES. Let x1, . . . , xn be the losses of a portfolio in the sample period. The
order statistics of the sample are these values arranged in increasing order. We use
the notation

x(1) ≤ x(2) ≤ · · · ≤ x(n)

to denote the arrangement and refer to x(i ) as the i th order statistic of the sample. In
particular, x(1) is the sample minimum and x(n) the sample maximum.

Assume that the loss variables are independent and identically distributed and have
a continuous distribution with pdf f (x) and CDF F (x). Then, we have the following
asymptotic result from the statistical literature (e.g., Cox and Hinkley, 1974, Appendix
2), for the order statistic x(�), where � = np with 0 < q < 1.

Result. Let xq be the q th quantile of F (x), that is, xq = F−1(q). Assume that the pdf
f (x) is not zero at xq (i.e., f (xq ) 	= 0). Then, the order statistic x(�) is asymptotically
normal with mean xq and variance q(1 − q)/[nf 2(xq)]. That is,

x(�) ∼ N

[
xq ,

q(1 − q)

n[f (xq )]2

]
, � = np. (7.18)

On the basis of the prior result, one can use x(�) to estimate the quantile xq , where
� = nq . In practice, the probability of interest q may not satisfy that nq is a positive
integer. In this case, one can use simple interpolation to obtain quantile estimates.
More specifically, for noninteger nq , let �1 and �2 be the two neighboring positive
integers such that �1 < nq < �2. Define qi = �i /n . The previous result shows that
x(�i )

is a consistent estimate of the quantile xqi
. From the definition, q1 < q < q2.

Therefore, the quantile xq can be estimated by

x̂q = q2 − q

q2 − q1
x(�1)

+ q − q1

q2 − q1
x(�2)

. (7.19)

In practice, sample quantiles can easily be obtained from most statistical packages,
including R. Different packages may use slightly different procedures to calculate
quantiles when nq is not an integer, but these procedures should be consistent when
sample size n increases. In our demonstration, we use the command quantile in
R to obtain empirical quantiles of a loss variable.

For the ES, we simply use the sample average of data that is greater than or
equal to the VaR. A simple way to calculate this sample average is as follows. Let
q = 1 − p, where p is the small upper tail probability of interest and iq be the largest
integer satisfying iq < nq . Then, the sample ES is

ÊS1−p =
∑n

i=iq+1 x(i )

n − iq
, q = 1 − p.
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Example 7.6. Consider the daily log returns of IBM stock from January 2, 2001 to
December 31, 2010. For a long position in the IBM stock, the loss variable is the
negative log returns. As 2515 × 0.95 = 2389.25, we have �1 = 2389, �2 = 2390,
p1 = 2389/2515, and p2 = 2390/2515. The empirical 95% quantile of the negative
log returns can be obtained as

x̂0.95 = 0.75x(2389) + 0.25x(2390) = 0.02654,

x(i ) is the i th order statistic of the loss variable xt . In this particular instance, x(2389) =
0.02652 and x(2390) = 0.02657. Finally, with p = 0.05, the sample ES is ÊS0.95 =
$39,949 for the next trading day. �

R Demonstration

> da=read.table("d-ibm-0110.txt",header=T)
> ibm=-log(da[,2]+1)
> prob1=c(0.9,0.95,0.99,0.999) % probabilities of interest
> quantile(ibm,prob1)

90% 95% 99% 99.9%
0.01736836 0.02653783 0.05013151 0.07198369
> sibm=sort(ibm) % Sorting into increasing order
> 0.95*2515
[1] 2389.25
> es=sum(sibm[2390:2515])/(2515-2389)
> es
[1] 0.03994857

Discussion. Advantages of using the empirical quantile method to VaR cal-
culation include (a) simplicity and (b) using no specific distributional assumption.
However, the approach has several drawbacks. First, it assumes that the distribution
of the loss xt remains unchanged from the sample period to the prediction period.
Given that VaR is concerned mainly with tail probability, this assumption implies that
the predicted loss cannot be greater than that of the historical loss. It is definitely
not so in practice. Second, when the tail probability p is small, the empirical quan-
tile is not an efficient estimate of the theoretical quantile. This can be seen from the
theoretical result mentioned earlier. With small p, f (xq) will be close to zero so that
the variance can be very large, indicating huge uncertainty in the quantile estimate.
Third, the direct quantile estimation fails to take into account the effect of explanatory
variables that are relevant to the portfolio under study.

7.5.2 Quantile Regression

In real application, one often has explanatory variables available that are important
to the problem under study. For example, the action taken by Federal Reserve Banks
on interest rates could have important impacts on the returns (and loss variables) of
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U.S. stocks. It is then more appropriate to consider the distribution function xt+1|Ft ,
where Ft includes the explanatory variables. In other words, we are interested in the
quantiles of the distribution function of xt+1 given Ft . Such a quantile is referred to
as a regression quantile in the literature; see Koenker and Bassett (1978).

To understand regression quantile, it is helpful to cast the empirical quantile of
the previous section as an estimation problem. For a given probability q = 1 − p, the
q th quantile of {xt } is obtained by

x̂q = argminβ

n∑
i=1

wq (xi − β),

where wq (z ) is defined by

wq (z ) =
{

qz if z ≥ 0,

(q − 1)z if z < 0.

Regression quantile is a generalization of such an estimate.
To see the generalization, suppose that we have the linear regression

xt = β ′z t + at , (7.20)

where β is a k -dimensional vector of parameters and z t is a vector of predictors that
are elements of Ft−1. The conditional distribution of xt given Ft−1 is a translation of
the distribution of at because β ′zt is known. Viewing the problem this way, Koenker
and Bassett (1978) suggest estimating the conditional quantile xq |Ft−1 of xt given
Ft−1 as

x̂q |Ft−1 ≡ inf{β ′
oz |Rq(βo) = min}, (7.21)

where “Rq (βo) = min” means that βo is obtained by

βo = argminβ

n∑
t=1

wq(xt − β ′zt ),

where wq (.) is defined as before. A computer program to obtain such an estimated
quantile can be found in Koenker and D’Orey (1987). The package quantreg of R
performs quantile regression analysis.

Example 7.7. Again, consider a long position of one million dollars on the IBM stock
and the sampling period is from January 2, 2001 to December 31, 2010. It is clear that
quantiles of a stock return is related to the stock volatility. The quantiles might also be
related to the volatility of the market. To explore these possibilities, we shall employ a
quantile regression with two predictors. The first predictor is the lag-1 daily volatility
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of the IBM stock and the second predictor is the lag-1 VIX index of Chicago Board
Options Exchange (CBOE). More specifically, we consider the quantile regression

Q(q |z t ) =
2515∑
t=2

wq (xt − β0 − β1st−1 − β2vt−1), (7.22)

where xt = −rt with rt being the daily log return of IBM stock, st−1 is the lag-1 daily
IBM stock volatility obtained from fitting a Gaussian GARCH(1,1) model to xt , and
vt−1 is the lag-1 VIX index obtained from CBOE. Here, we use the VIX index, not
the percentage VIX.

Applying the quantile regression in Equation (7.22) with q = 0.95, we obtain

β̂0 = −0.001(0.003), β̂1 = 1.17724(0.22268), β̂2 = 0.02809(0.01615),

where the number in parentheses denotes standard error. The constant term is statisti-
cally insignificant, and the p-values for the two remaining coefficients are 0.0 and 0.08,
respectively. Thus, as expected the 95th quantile of the IBM negative daily log returns
depends critically on the lag-1 IBM daily volatility and marginally on the lag-1 VIX
index. As s2515 = 0.00802 and v2515 = 0.1775, we have Q̂(0.95|z2515) = 0.013385.
This implies that VaR0.95 = $13,385 for the financial position. Figure 7.7 shows the
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Figure 7.7. Time plot of the negative daily log returns of IBM stock from January 3, 2001

to December 31, 2010. The upper line shows the 95th quantiles obtained by the quantile

regression of Equation (7.22).
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time plot of the loss variable xt = −rt and the fitted values of the quantile regres-
sion with probability q = 0.95. The fitted quantiles behave in a similar manner as the
volatility. This is understandable because the coefficient of lag-1 volatility is highly
significant. The plot also shows that VaR is time varying and highlights the fact that
the actual loss may vary when the loss exceeds VaR. �

Finally, the quantile regression becomes harder to estimate when the probability
q is close to one. This is due to data limitation because for a large q , the number of
relevant observations becomes small. For the IBM daily log returns considered, the
quantile regression with probability 0.99 becomes noninformative. See the attached
output. All coefficient estimates become statistically insignificant at the usual 5% level.

R Demonstration

> dd=read.table("d-ibm-rq.txt",header=T) % Load data
> head(dd)

nibm vol vix
1 -0.109478400 0.01700121 29.99
2 0.015308580 0.01614694 26.60
.....

6 -0.009408600 0.03211091 27.99
> dim(dd)
[1] 2514 3
> dd[,3]=dd[,3]/100
> library(quantreg)
> mm=rq(nibm∼vol+vix,tau=0.95,data=dd) % Quantile regression
> summary(mm)
Call: rq(formula = nibm ∼ vol + vix, tau = 0.95, data = dd)
tau: [1] 0.95 % probability
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) -0.00104 0.00257 -0.40317 0.68686
vol 1.17724 0.22268 5.28660 0.00000
vix 0.02809 0.01615 1.73977 0.08202
> names(mm)
[1] "coefficients" "x" "y" "residuals"
[5] "dual" "fitted.values" "formula" "terms"
[9] "xlevels" "call" "tau" "rho"

[13] "method" "model"
> fit=mm$fitted.values
> tdx=c(2:2515)/252+2001
> plot(tdx,dd$nibm,type=‘l’,xlab=‘year’,ylab=‘neg-log-rtn’)
> lines(tdx,fit,col=‘red’)
> v1[2515]
[1] 0.008018202
> vix[2515]
[1] 17.75
> vfit=-.00104+1.17724*v1[2515]+0.02809*vix[2515]/100
> vfit
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[1] 0.01338532
> mm=rq(xt∼vol+vix,tau=0.99,data=dd) % 99th quantile
> summary(mm)
Call: rq(formula = xt ∼ vol + vix, tau = 0.99, data = dd)
tau: [1] 0.99
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 0.01182 0.00831 1.42190 0.15518
vol 1.03129 0.73125 1.41031 0.15857
vix 0.04409 0.05335 0.82641 0.40865

7.6 EXTREME VALUE THEORY

Risk measures are used primarily to safeguard a financial position against big losses.
To better understand the rare, but important, events of big loss, extreme value theory
(EVT) becomes highly relevant. In this section, we review some EVT developed in the
statistical literature. Denote the loss variable of a financial position, measured in a fixed
time interval such as daily, by xt . For stock returns, xt is either log returns or negative
log returns; see Equation (7.9). Consider the collection of n measurements of loss,
{x1, . . . , xn}. The maximum loss is x(n), the maximum order statistic. Specifically, x(n)

= max1≤j≤n{xj }. The statistical theory that governs properties of a properly normalized
x(n) as n increases is called the EVT (see Beirlant et al., 2004; Longin, 1996, 1999a, b).

7.6.1 Review of Extreme Value Theory

Assume that the losses xt are serially independent with a common cumulative distri-
bution function F (x) and that the range of the return xt is [l , u]. For log returns of a
stock, we have l = −∞ and u = ∞. Then, the CDF of x(n), denoted by Fn ,n (x), is
given by

Fn ,n(x) = Pr[x(n) ≤ x ]

= Pr(x1 ≤ x , x2 ≤ x , . . . , xn ≤ x) (by definition of maximum)

=
n∏

j=1

Pr(xj ≤ x) (by independence)

=
n∏

j=1

F (x) = [F (x)]n . (7.23)

In practice, the CDF F (x) of xt is unknown and, hence, Fn ,n(x) of x(n) is
unknown. However, as n increases to infinity, Fn ,n (x) becomes degenerated −
namely, Fn ,n(x) → 0 if x < u and Fn ,n(x) → 1 if x ≥ u as n goes to infinity. This
degenerated CDF has no practical value. Therefore, the EVT is concerned with
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finding two sequences {μn} and {σn}, where σn > 0, such that the distribution of
x∗
(n) ≡ (x(n) − μn)/σn converges to a nondegenerate distribution as n goes to infinity.

The sequence {μn} is a location series and {σn} is a series of scaling factors. Under
the independent assumption, the limiting distribution of the normalized maximum
r∗
(n) is given by

F∗(x) =
{

exp[−(1 + ξx)−1/ξ ] if ξ 	= 0

exp[− exp(−x)] if ξ = 0,
(7.24)

for x < −1/ξ if ξ < 0 and for x > −1/ξ if ξ > 0, where the subscript ∗ signifies
the normalized maximum. The case of ξ = 0 is taken as the limit when ξ → 0. The
parameter ξ is referred to as the shape parameter that governs the tail behavior of the
limiting distribution. The parameter α = 1/ξ is called the tail index of the distribution.

The limiting distribution in Equation (7.24) is the generalized extreme value
(GEV) distribution of Jenkinson (1955) for the maximum. It encompasses the three
types of limiting distribution of Gnedenko (1943):

• Type I: ξ = 0, the Gumbel family. The CDF is

F∗(x) = exp[− exp(−x)], −∞ < x < ∞. (7.25)

• Type II: ξ > 0, the Fréchet family. The CDF is

F∗(x) =
{

exp[−(1 + ξx)−1/ξ ] if x > −1/ξ ,

0 otherwise.
(7.26)

• Type III: ξ < 0, the Weibull family. The CDF here is

F∗(x) =
{

exp[−(1 + ξx)−1/ξ ] if x < −1/ξ ,

1 otherwise.

Gnedenko (1943) gave necessary and sufficient conditions for the CDF F (x) of xt to
be associated with one of the three types of limiting distribution. Briefly speaking,
the tail behavior of F (x) determines the limiting distribution F∗(x) of the maximum.
The right tail of the distribution declines exponentially for the Gumbel family, by a
power function for the Fréchet family, and is finite for the Weibull family (Fig. 7.8).
Readers are referred to Embrechts et al. (1997) for a comprehensive treatment of the
EVT. See also Gumbel (1958). For risk management, we are mainly interested in the
Fréchet family that includes stable and Student-t distributions. The Gumbel family
consists of thin-tailed distributions such as normal and lognormal distributions. The
pdf of the generalized limiting distribution in Equation (7.24) can be obtained easily
by differentiation:

f∗(x) =
{

(1 + ξx)−1/ξ−1 exp[−(1 + ξx)−1/ξ ] if ξ 	= 0,

exp[−x − exp(−x)] if ξ = 0,
(7.27)
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Figure 7.8. Probability density functions of extreme value distributions for normalized maxi-

mum. The solid line is for a Gumbel distribution, the dotted line is for the Weibull distribution

with ξ = −0.5, and the dashed line is for the Fréchet distribution with ξ = 0.9.

where −∞ < x < ∞ for ξ = 0, and x < −1/ξ for ξ < 0, and x >−1/ξ

for ξ > 0.
The aforementioned EVT has two important implications. First, the tail behavior

of the CDF F (x) of xt , not the specific distribution, determines the limiting distribution
F∗(x) of the normalized maximum. Thus, the theory is generally applicable to a wide
range of distributions for the loss variable xt . The sequences {μn} and {σn}, however,
depend on the CDF F (x). McNeil et al. (2005, Chapter 7) provide explicit values
of μn and σn for exponential and Pareto distributions. Second, Feller (1971, p. 279)
shows that the tail index ξ does not depend on the time interval of xt . That is, the tail
index (or equivalently the shape parameter) is invariant under time aggregation. This
second feature of the limiting distribution becomes handy in the VaR calculation.

The EVT has been extended to serially dependent observations {xt }n
t=1 provided

that the dependence is weak. Berman (1964) shows that the same form of the limiting
extreme value distribution holds for stationary normal sequences provided that the
autocorrelation function of xt is squared summable (i.e.,

∑∞
i=1 ρ2

i < ∞), where ρi
is the lag-i autocorrelation function of xt . For further results concerning the effect
of serial dependence on the EVT, readers are referred to Leadbetter et al. (1983,
Chapter 3). Tsay (2010, Section 7.8) discusses the extremal index for a strictly sta-
tionary time series. Here, we provide a brief introduction of the concept of extremal
index (Leadbetter, 1974, 1983; Hsing et al., 1988).
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Let {xt } be a strictly stationary time series, where the distribution of xt is F (x).
Let {x̃t } be an associated series of independent and identically distributed random
variables x̃t , which follows the same distribution F (x). That is, {x̃t } is a strict white
noise series with the same distribution F (x). Let x(n) = max(x1, . . . , xn ) and x̃(n) =
max(x̃1, . . . , x̃n ). For many processes {xt }, one can show that there exists a real number
θ ∈ (0, 1] such that

lim
n→∞ P [(x̃(n) − μn)/σn ≤ x ] = F∗(x), (7.28)

for a nondegenerated limit F∗(x) if and only if

lim
n→∞ P [(x(n) − μn)/σn ≤ x ] = F θ

∗ (x). (7.29)

This value θ is called the extremal index of {xt }.
When the results (Eqs. 7.28 and 7.29) hold, we see that, from Equation (7.23),

for a sufficiently large n we have

P(x(n) ≤ y) ≈ P θ (x̃(n) ≤ y) = F nθ (y),

where y = σn x + μn . Therefore, for large n , the probability distribution of the max-
imum of n observations from the strictly stationary time series with extremal index
θ can be approximately by the distribution of the maximum of nθ observations from
the associated iid series. Notice that nθ ≤ n . This approximation says that nθ can be
thought of as the number of independent clusters of observations in n observations
of xt . In this sense, nθ can be treated as the equivalent number of observations of a
dependent series with respect to its iid counterpart and 1/θ can be interpreted as the
reciprocal of the mean cluster size. It should be noted, however, that not every strictly
stationary time series has an extremal index.

7.6.2 Empirical Estimation

Before applying EVT to assessing risk, we consider estimation of the unknown param-
eters of the generalized extreme value distribution. The distribution contains three
parameters. They are the shape parameter ξ , the location parameter μ, and the scale
σ . These parameters can be estimated by using either parametric or nonparametric
methods. We review some of the estimation methods.

The Block Maxima Method. For a given sample, there is only a single max-
imum, and we cannot estimate the three parameters with an extreme observation.
Alternative ideas must be used. One of the ideas used in the literature is to divide the
sample into subsamples and apply the EVT to the subsamples. Assume that there are
T observations available, say {xj }T

j=1. We divide the sample into g nonoverlapping
subsamples each with n observations, assuming for simplicity that T = ng . In other
words, we divide the data as

{x1, . . . , xn |xn+1, . . . , x2n |x2n+1, . . . , x3n | · · · |x(g−1)n+1, . . . , xng },
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and write the observed returns as xin+j , where 1 ≤ j ≤ n and i = 0, . . . , g − 1. Note
that each subsample corresponds to a subperiod of the data span. When n is sufficiently
large, we hope that the EVT applies to each subsample. In application, the choice of
n can be guided by practical considerations. For example, for daily returns, n = 21
corresponds approximately to the number of trading days in a month and n = 63
denotes the number of trading days in a quarter.

Let xn ,i be the maximum of the i th subsample (i.e., xn ,i is the largest loss of the
i th subsample), where the subscript n is used to denote the size of the subsample.
When n is sufficiently large, yn ,i = (xn ,i − μ)/σ should follow an extreme value
distribution, and the collection of subsample maxima {xn ,i |i = 1, . . . , g} can then be
regarded as a random sample of g observations from that extreme value distribution.
Specifically, we define

xn ,i = max
1≤j≤n

{x(i−1)n+j }, i = 1, . . . , g . (7.30)

The collection of subsample maxima {xn ,i } is the data we use to estimate the unknown
parameters of the extreme value distribution. Clearly, the estimates obtained may
depend on the choice of subperiod length n .

Remark. When T is not a multiple of the subsample size n , several methods have
been used to deal with this issue. First, one can allow the last subsample to have a
smaller size. Second, one can ignore the first few observations so that each subsample
has size n . The evir package of R uses the first method. �

Maximum Likelihood Method. Assuming that the subperiod maxima {xn ,i }
follow a generalized extreme value distribution such that the pdf of yi = (xn ,i − μ)/σ

is given in Equation (7.27), we can obtain the pdf of xn ,i by a simple transformation as

f (xn ,i ) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

σ

(
1 + ξ(xn ,i − μ)

σ

)−(1+ξ)/ξ

exp

[
−
(

1 + ξ(xn ,i − μ)

σ

)−1/ξ
]

if ξ 	= 0,

1

σ
exp

[
−xn ,i − μ

σ
− exp

(
−xn ,i − μ

σ

)]
if ξ = 0,

where it is understood that 1 + ξ(xn ,i − μ)/σ > 0 if ξ 	= 0. Under the independence
assumption, the likelihood function of the subperiod maxima is

�(xn ,1, . . . , xn ,g |ξ , σ , μ) =
g∏

i=1

f (xn ,i ).

Nonlinear estimation procedures can then be used to obtain maximum likeli-
hood estimates of ξ , μ, and σ . These estimates are unbiased, asymptotically normal,
and of minimum variance under proper assumptions. See Embrechts et al. (1997)
and Coles (2001) for details. We apply this approach to some stock return series
later.
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The Nonparametric Approach. The shape parameter ξ can be estimated using
some nonparametric methods. Two such methods are mentioned here. These two
methods are proposed by Hill (1975) and Pickands (1975) and are referred to as the
Hill estimator and Pickands estimator , respectively. Both estimators apply directly to
the returns {xt }T

t=1. Thus, there is no need to consider subsamples. Denote the order
statistics of the sample as

x(1) ≤ x(2) ≤ · · · ≤ x(T ).

Let q be a positive integer. The two estimators of ξ are defined as

ξp(q) = 1

ln(2)
ln

(
x(T−q+1) − x(T−2q+1)

x(T−2q+1) − x(T−4q+1)

)
, q ≤ T/4, (7.31)

ξh(q) = 1

q

q∑
i=1

[
ln(x(T−i+1)) − ln(x(T−q))

]
, (7.32)

where the argument (q) is used to emphasize that the estimators depend on q and the
subscripts p and h denote Pickands and Hill estimators, respectively. The choice of
q differs between Hill and Pickands estimators. It has been investigated by several
researchers, but there is no general consensus on the best choice available. Dekkers
and De Haan (1989) show that ξp(q) is consistent if q increases at a properly chosen
pace with the sample size T . In addition,

√
q[ξp(q) − ξ ] is asymptotically normal

with mean zero and variance ξ 2(22ξ+1 + 1)/[2(2ξ − 1) ln(2)]2. The Hill estimator is
applicable to the Fréchet distribution only, but it is more efficient than the Pickands
estimator when applicable. Goldie and Smith (1987) show that

√
q[ξh(q) − ξ ] is

asymptotically normal with mean zero and variance ξ2. In practice, one may plot the
Hill estimator ξh(q) against q and find a proper q such that the estimate appears to
be stable. The estimated tail index α = 1/ξh(q) can then be used to obtain extreme
quantiles of the return series; see Zivot and Wang (2003).

7.6.3 Application to Stock Returns

We apply the EVT to the daily log returns of IBM stock from January 2, 2001 to
December 31, 2010. The returns are measured in percentages, and the sample size
is 2515 (i.e., T = 2515). Figure 7.9 shows the time plots of block maximum of the
daily log returns when the length of the subperiod is 21 days, which corresponds
approximately to a month. The upper plot is for the positive returns while the lower
plot the negative returns. Empirical analysis of this section is carried out in R using
the command gev of the package evir, which stands for extreme value in R, and a
simple R script that calculates the Hill estimator.

Table 7.1 summarizes some estimation results of the shape parameter ξ via the
Hill estimator. Two choices of q are reported in Table 7.1, and the results are stable.
To provide an overall picture of the performance of the Hill estimator, Figure 7.10
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Figure 7.9. Block maximum of daily log returns of IBM stock, in percentages, when the

subperiod is 21 trading days. The data span is from January 2, 2001 to December 31, 2010 so

that there are 120 blocks. (a) positive returns and (b) negative returns.

TABLE 7.1. Results of the Hill Estimator for Daily Log Returns of IBM Stock from July 3,
1962 to December 31, 1998

q 110 130 150

rt 0.380(0.036) 0.399(0.035) 0.398(0.032)

−rt 0.356(0.034) 0.383(0.034) 0.405(0.033)

Standard errors are in parentheses.

shows the scatterplots of the Hill estimator ξh(q) and its pointwise 95% confidence
interval against q . For the extreme positive daily log returns, the estimator is stable
ranging between 0.30 and 0.4 for a wide range of q . For the extreme negative returns,
the estimate of ξ is approximately 0.3 for q in [40,126]. However, the estimate drops
significantly for smaller q . Overall, the estimated shape parameters are significantly
different from zero at the asymptotic 5% level for a wide range of q , indicating
that the distribution of daily log returns of IBM stock belongs to the Fréchet family.
The analysis thus rejects the normality assumption commonly used in practice. This
is consistent with our experience in fitting volatility models to the IBM daily stock
returns.

Next, we apply the maximum likelihood method to estimate parameters of the
generalized extreme value distribution for IBM daily log returns. Table 7.2 summarizes
the estimation results for two choices of the length of subperiods, namely, 1 month
(n = 21) and 2 months (n = 42). We do not use longer subperiods because of the
sample size constraint. From the table, we make the following observations:
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Figure 7.10. Scatterplots of the Hill estimator for the daily log returns of IBM stock. The

sample period is from January 2, 2001 to December 31, 2010: (a) positive returns and (b)

negative returns.

TABLE 7.2. Maximum Likelihood Estimates of the Extreme Value Distribution for Daily Log
Returns of IBM Stock, in Percentages, from January 2, 2001 to December 31, 2010

Length of Subperiod Shape Parameter ξ Scale σ Location μ

Maximal Positive Returns

1 mo (n = 21, g = 120) 0.278(0.087) 1.046(0.092) 2.046(0.111)
2 mo (n = 42, g = 60) 0.315(0.109) 1.168(0.145) 2.622(0.170)

Maximal Negative Returns

1 mo (n = 21, g = 120) 0.251(0.088) 1.029(0.090) 1.966(0.109)
2 mo (n = 42, g = 60) 0.287(0.142) 1.100(0.143) 2.489(0.170)

a Standard errors are in parentheses.

• Estimates of the location and scale parameters μ̂ and σ̂ increase in modulus
as n increases. This is expected as magnitudes of the subperiod minimum and
maximum are nondecreasing functions of n .

• Estimates of the shape parameter (or equivalently the tail index) are relatively
stable, but they become less accurate when the number of subperiods g is
small.

These results are similar to those of Tsay (2010, Chapter 7) that uses daily log returns
of IBM stock from 1962 to 1998.
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R Demonstration for Extreme Value Analysis. The series is IBM daily log
returns from 2001 to 2010. Output edited.

> da=read.table("d-ibm-0110.txt",header=T)
> ibm=log(da$return+1)*100
> xt=-ibm
> source("Hill.R") % compile R script
> Hill
function(x,q){
# Compute the Hill estimate of the shape parameter.
sx=sort(x); T=length(x); ist=T-q
y=log(sx[ist:T])
hill=sum(y[2:length(y)])/q
hill=hill-y[1]
sd=sqrt(hill^2/q)
cat("Hill estimate & std-err:",c(hill,sd),"\ n")
Hill <- list(est=hill,std=sd)
}
> Hill(ibm,110)
Hill estimate & std-err: 0.3800632 0.0362376
> Hill(xt,110)
Hill estimate & std-err: 0.3555175 0.03389727

> library(evir) % Load package
> par(mfcol=c(2,1))
> hill(ibm,option=c("xi"),end=200)
> hill(xt,option=c("xi"),end=200)
> help(hill)

> m1=gev(xt,block=21)
> m1
$n.all
[1] 2515
$n
[1] 120
$data
[1] 4.0335654 4.6038703 6.9818569 ......

$block
[1] 21
$par.ests

xi sigma mu
0.251353 1.028910 1.965850
$par.ses

xi sigma mu
0.08847742 0.09013351 0.10932034
$varcov

[,1] [,2] [,3]
[1,] 0.007828254 -0.001080741 -0.003453668
[2,] -0.001080741 0.008124049 0.006145413
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[3,] -0.003453668 0.006145413 0.011950936
$converged
[1] 0

> plot(m1)
Make a plot selection (or 0 to exit):
1: plot: Scatterplot of Residuals
2: plot: QQ-plot of Residuals
Selection: 1

Define the residuals of a GEV distribution fit as

wi =
(

1 + ξ̂
xn ,i − μ̂

σ̂

)−1/ξ̂

.

Using the pdf of the GEV distribution and transformation of variables, one can easily
show that {wi } should form an iid random sample of exponentially distributed random
variables if the fitted model is correctly specified. Figure 7.11 shows the residual plots
of the GEV distribution fit to the negative IBM daily log returns with subperiods
of 21 days. Figure 7.11a gives the residuals and Figure 7.11b shows a quantile-to-
quantile (QQ) plot against an exponential distribution. The plots indicate that the fit
is reasonable.
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Figure 7.11. Residual analysis of fitting a GEV distribution to the negative IBM daily log

returns, in percentages, from January 2, 2001 to December 31, 2010. The subperiod length

used is 21 days.
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Remark. Besides evir, several other packages are also available in R to perform
extreme value analysis. They are evd, POT, and extRemes. �

7.7 AN EXTREME VALUE APPROACH TO VAR

In this section, we discuss an approach to VaR calculation using the extreme value
theory. We divide the discussion into two parts. The first part is concerned with
parameter estimation using the method discussed in the previous section. The second
part focuses on VaR calculation by relating the probabilities of interest to the choice
of the length of subperiods.

Part I. Assume that there are T observations of a loss variable available in the
sample period. We partition the sample period into g nonoverlapping subperiods of
length n such that T = ng . If T = ng + m with 1 ≤ m < n , then we can simply delete
the first m observations from the sample. The EVT discussed in the previous section
enables us to obtain estimates of the location, scale, and shape parameters μn , σn ,
and ξn for the subperiod maxima {xn ,i }. Here, we use the subscript n to signify that
the parameters are estimated using subperiods of length n . Plugging the maximum
likelihood estimates into the CDF in Equation (7.24) with y = (x − μn)/σn , we can
obtain the quantile of a given probability of the generalized extreme value distribution.
Let p∗ be a small upper tail probability and y∗

n be the (1 − p∗)th quantile of the
subperiod maxima under the limiting generalized extreme value distribution. Then,
we have

1 − p∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
−
(

1 + ξn(y∗
n − μn)

σn

)−1/ξn
]

if ξn 	= 0,

exp

[
− exp

(
−y∗

n − μn

σn

)]
if ξn = 0,

where it is understood that 1 + ξn(y∗
n − μn)/σn > 0 for ξn 	= 0. Rewriting this

equation as

ln(1 − p∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
[

1 + ξn(y∗
n − μn)

σn

]−1/ξn

if ξn 	= 0,

− exp

[
−y∗

n − μn

σn

]
if ξn = 0,

we obtain the quantile as

y∗
n =

⎧⎪⎨
⎪⎩

μn − σn

ξn

{
1 − [− ln(1 − p∗)

]−ξn
}

if ξn 	= 0,

μn − σn ln[− ln(1 − p∗)] if ξn = 0.

(7.33)

In financial applications, the case of ξn 	= 0 is of major interest.
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Part II. For a given upper tail probability p∗, the quantile y∗
n of Equation (7.33) is

the VaR based on the EVT for the subperiod maximum. The next step is to study the
explicit relationship between quantiles of the subperiod maximum and the observed
loss xt series.

Because most asset losses are either serially uncorrelated or have weak serial
correlations, we may use the relationship in Equation (7.23) and obtain

1 − p∗ = P(xn ,i ≤ y∗
n ) = [P(xt ≤ y∗

n )]n . (7.34)

This relationship between probabilities allows us to obtain VaR for the original loss
variable xt . More precisely, for a specified small upper probability p, the (1 − p)th
quantile of xt is y∗

n if the upper tail probability p∗ of the subperiod maximum is chosen
based on Equation (7.34), where P(xt ≤ y∗

n ) = 1 − p. Consequently, for a given small
upper tail probability p, the VaR of a financial position with loss variable xt is

VaR =

⎧⎪⎨
⎪⎩

μn − σn

ξn

{
1 − [−n ln(1 − p)

]−ξn
}

if ξn 	= 0

μn − σn ln[−n ln(1 − p)] if ξn = 0,

(7.35)

where n is the length of subperiods.

Summary. We summarize the approach of applying the traditional EVT to VaR
calculation as follows:

1. Select the length of the subperiod n and obtain subperiod maxima {xn ,i }, i =
1, . . . , g , where g = [T/n].

2. Obtain the maximum likelihood estimates of μn , σn , and ξn .

3. Check the adequacy of the fitted extreme value model; see the next section for
some methods of model checking.

4. If the extreme value model is adequate, apply Equation (7.35) to calculate
VaR.

Example 7.8. Consider the daily log return, in percentage, of IBM stock from January
2, 2001 to December 31, 2010. Again, assume that we hold a long position of one
million dollars on the stock. In this case, the loss variable is xt = −rt . From Table 7.2,
we have α̂n = 1.029, β̂n = 1.966, and ξ̂n = 0.251 for n = 21. Therefore, for the
left-tail probability p = 0.05, the corresponding VaR is

VaR = 1.966 − 1.029

0.251

{
1 − [−21 ln(1 − 0.05)]−0.251}

= 1.8902.



370 VALUE AT RISK

Thus, for negative daily log returns of the stock, the upper 1% quantile is 1.8902%.
Consequently, we have VaR0.95 = $1, 000, 000 × 0.018902 = $18,902. If the proba-
bility is 0.01, then the corresponding VaR is $39,242.

If we chose n = 42 (i.e., 2 months), then α̂n = 1.1, β̂n = 2.489, and ξ̂n = 0.287.
The upper 1% quantile of the loss variable based on the extreme value distribution is

VaR = 2.489 − 1.1

0.287
{1 − [−42 ln(1 − 0.01)]−0.287} = 3.5655.

Therefore, for a long position of $1,000,000, the corresponding 1-day horizon VaR is
$35,655 at the 1% risk level. If the probability is 0.05, then the corresponding VaR is
$17,313. In this particular case, the choice of n = 21 gives higher VaR values. �

Remark. As shown by the results of Example 7.6, the VaR calculation based on the
traditional EVT depends on the choice of n , which is the length of subperiods. For
the limiting extreme value distribution to hold, one would prefer a large n . But a
larger n means a smaller g when the sample size T is fixed, where g is the effective
sample size used in estimating the three parameters σn , μn , and ξn . Therefore, some
compromise between the choices of n and g is needed. A proper choice may depend
on the returns of the asset under study. We recommend that one should check the
stability of the resulting VaR in applying the traditional EVT. �

7.7.1 Discussion

We have applied various methods of VaR calculation to the daily log returns of IBM
stock for a long position of $1 million. Consider the VaR of the position for the next
trading day. If the probability is 5%, which means that with probability 0.95 the
loss will be less than or equal to the VaR for the next trading day, then the results
obtained are

1. $11,730 for the RiskMetrics,

2. $12,270 for a Gaussian GARCH(1,1) model,

3. $15,450 for a GARCH(1,1) model with a standardized Student-t distribution
with 5.75 degrees of freedom,

4. $26,540 for using the empirical quantile,

5. $13,385 for using quantile regression, and

6. $18,901 for applying the traditional EVT using n = 21 for the length of
subperiods.

If the tail probability is 1%, then the VaR is

1. $16,590 for the RiskMetrics,

2. $15,540 for a Gaussian GARCH(1,1) model,
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3. $25,420 for a GARCH(1,1) model with a standardized Student-t distribution
with 5.75 degrees of freedom,

4. $50,132 for using the empirical quantile, and

5. $39,242 for applying the traditional EVT using n = 21.

There are substantial differences among different approaches. This is not sur-
prising because there exists substantial uncertainty in estimating tail behavior of a
statistical distribution. As there is no true VaR available to compare the accuracy of
different approaches, we recommend that one applies several methods to gain insight
into the range of VaR.

7.7.2 Multiperiod VaR

The square root of time rule of the RiskMetrics methodology becomes a special case
under the EVT. The proper relationship between �-day and 1-day horizons is

VaR(�) = �1/αVaR = �ξVaR,

where α is the tail index and ξ is the shape parameter of the extreme value distribution;
see Danielsson and de Vries (1997a). This relationship is referred to as the α-root of
time rule.

For illustration, consider the daily log returns of IBM stock in Example 7.8. If
we use p = 0.01 and the results of n = 21, then for a 15-day horizon we have

VaR(15) = (15)0.251VaR = 1.973 × $39, 242 = $77, 437.

Because �0.251 < �0.5, the α-root of time rule produces lower �-day horizon VaR than
the square root of time rule does.

7.7.3 Return Level

Another risk measure based on the extreme values of subperiods is the return level .
The g n-subperiod return level, Ln ,g , is defined as the level that is exceeded in one
out of every g subperiods of length n . That is,

P(xn ,i > Ln ,g ) = 1

g
,

where xn ,i denotes subperiod maximum. The subperiod in which the return level is
exceeded is called a stress period . If the subperiod length n is sufficiently large so
that normalized xn ,i follows the GEV distribution, then the return level is

Ln ,g = μn − σn

ξn
{1 − [− ln(1 − 1/g)]−ξn },



372 VALUE AT RISK

provided that ξn 	= 0. Note that this is precisely the quantile of extreme value distri-
bution given in Equation (7.33) with tail probability p∗ = 1/g , even though we write
it in a slightly different way. Thus, return level applies to the subperiod maximum,
not to the underlying returns. This marks the difference between VaR and return level.

For the negative daily IBM log returns with subperiod length of 21 days, we can
use the fitted model to obtain the return level for 12 such subperiods (i.e., g = 12).
The return level is 5.434%.

R Demonstration for Obtaining Return Level

> da=read.table("d-ibm-0110.txt",header=T)
> xt=-log(da[,2]+1)*100
> library(evir)
> m1=gev(xt,block=21) % GEV estimation with sub-period length 21.
> rl.21.12=rlevel.gev(m1,k.block=12)
> rl.21.12 % Output plot is not shown.
[1] 4.653307 5.434319 6.756033

% return-level = 5.434 with 95% C.I. (4.653, 6.756)

7.8 PEAKS OVER THRESHOLDS

The traditional EVT approach to risk calculation encounters some difficulties. First,
the choice of subperiod length n is not clearly defined. Second, by using only sub-
period maxima, the approach does not make efficient use of the loss data. Third, the
approach is unconditional and, hence, does not take into consideration effects of other
explanatory variables. To overcome these difficulties, an alternative approach to using
EVT has been proposed in the statistical literature; see Davison and Smith (1990) and
Smith (1989, 1999). Instead of focusing on the extremes (maximum or minimum),
the new approach focuses on exceedances of the loss over some high threshold and
the times at which the exceedances occur. Thus, this new approach is also referred
to as peaks over thresholds (POT). For illustration, consider the daily returns of IBM
stock used in this chapter and a long position on the stock. Denote the negative daily
log return by xt . Let η be a prespecified high threshold. We may, for instance, choose
η = 2.5%. Suppose that the i th exceedance occurs at day ti (i.e., xti ≥ η). Then, the
new approach focuses on the data (ti , xti − η). Here, xti − η is the exceedance over
the threshold η and ti is the time at which the i th exceedance occurs.

In practice, the occurrence times {ti } provide useful information about the intensity
of the occurrence of important “rare events” (e.g., greater than the threshold η for a
loss variable). A cluster of ti indicates a period of large market declines. The exceeding
amount (or exceedance) xti − η is also of importance as it provides the actual quantity
of interest.

On the basis of the prior introduction, the POT approach does not require the
choice of a subperiod length n , but it requires the specification of threshold η. Different
choices of the threshold η lead to different estimates of the shape parameter ξ (and
hence the tail index 1/ξ ). In the literature, some researchers believe that the choice of
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η is a statistical problem as well as a financial one, and it cannot be determined based
purely on statistical theory. For example, different financial institutions (or investors)
have different risk tolerances. As such, they may select different thresholds even for
an identical financial position. For the daily log returns of IBM stock considered in
this chapter, the calculated VaR is not sensitive to the choice of η.

The choice of threshold η also depends on the observed log returns. For a stable
return series, η = 2.5% may fare well for a long position. For a volatile return series
(e.g., daily returns of a dot-com stock), η may be as high as 10%. Limited experience
shows that η can be chosen so that the number of exceedances is sufficiently large
(e.g., about 5% of the sample). For a more formal study on the choice of η, see
Danielsson and de Vries (1997b).

7.8.1 Statistical Theory

Again consider the loss variable xt of an asset. Suppose that the i th exceedance occurs
at ti . Focusing on the exceedance y = xt − η and exceeding time ti results in a funda-
mental change in statistical thinking. Instead of using the marginal distribution (e.g.,
the limiting distribution of the minimum or maximum), the POT approach employs
a conditional distribution to handle the magnitude of exceedance given that the mea-
surement exceeds a threshold. The chance of exceeding the threshold is governed by a
probability law. In other words, the POT approach considers the conditional distribu-
tion of y = xt − η given xt ≥ η for a long position. Occurrence of the event {xt ≥ η}
follows a point process (e.g., a Poisson process). In particular, if the intensity param-
eter λ of the process is time invariant, then the Poisson process is homogeneous. If λ

is time variant, then the process is nonhomogeneous. The concept of Poisson process
can be generalized to the multivariate case.

The basic theory of the POT approach is to consider the conditional distribution of
x = y + η given x > η for the limiting distribution of the maximum given in Equation
(7.24). Then, the conditional distribution of x ≤ y + η given x > η is

Pr(x ≤ y + η|x > η) = Pr(η ≤ x ≤ y + η)

Pr(x > η)
= Pr(x ≤ y + η) − Pr(x ≤ η)

1 − Pr(x ≤ η)
. (7.36)

Using the CDF F∗(.) of Equation (7.24) and the approximation e−z ≈ 1 − z and after
some algebra, we obtain that

Pr(x ≤ y + η|x > η) = F∗(y + η) − F∗(η)

1 − F∗(η)

=
exp

[
−
(

1 + ξ(y+η−μ)

σ

)−1/ξ
]

− exp

[
−
(

1 + ξ(η−μ)

σ

)−1/ξ
]

1 − exp

[
−
(

1 + ξ(η−μ)

σ

)−1/ξ
]

≈ 1 −
(

1 + ξy

σ + ξ(η − μ)

)−1/ξ

, (7.37)
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where y > 0 and 1 + ξ(η − μ)/σ > 0. As is seen later, this approximation makes
explicitly the connection of the POT approach to the traditional EVT. The case of
ξ = 0 is taken as the limit of ξ → 0 so that

Pr(x ≤ y + η|x > η) ≈ 1 − exp(−y/σ).

The probability distribution with CDF

Gξ ,ψ(η)(y) =

⎧⎪⎨
⎪⎩

1 −
[

1 + ξy

ψ(η)

]−1/ξ

for ξ 	= 0,

1 − exp[−y/ψ(η)] for ξ = 0,
(7.38)

where ψ(η) > 0, y ≥ 0 when ξ ≥ 0, and 0 ≤ y ≤ −ψ(η)/ξ when ξ < 0, which is
called the generalized Pareto distribution (GPD). Thus, the result of Equation (7.37)
shows that the conditional distribution of x given x > η is well approximated by a
GPD with parameters ξ and ψ(η) = σ + ξ(η − μ). See Embrechts et al. (1997) for
further information. An important property of the GPD is as follows. Suppose that the
excess distribution of x given a threshold η0 is a GPD with shape parameter ξ and
scale parameter ψ(η0). Then, for an arbitrary threshold η > η0, the excess distribution
over the threshold η is also a GPD with shape parameter ξ and scale parameter
ψ(η) = ψ(η0) + ξ(η − η0).

When ξ = 0, the GPD in Equation (7.38) reduces to an exponential distribution.
This result motivates the use of a QQ-plot of excess returns over a threshold against
exponential distribution to infer the tail behavior of the returns. If ξ = 0, then the
QQ-plot should be linear. Figure 7.12a shows the QQ-plot of daily negative IBM log
returns used in this chapter with threshold 0.01. The plot shows a clear deviation from
being a straight line, indicating that the left tail of the daily IBM log returns is heavier
than that of a normal distribution, that is, ξ 	= 0.

R Commands Used to Produce Figure 7.12.

> da=read.table("d-ibm-0110.txt",header=T)
> ibm=log(da[,2]+1)
> library(evir)
> par(mfcol=c(2,1))
> xt=-ibm
> qplot(xt,threshold=0.01,pch=‘*’,cex=0.8,

main="Loss variable of daily IBM log returns")
> meplot(ibm)
> title(main="Daily IBM log returns")

7.8.2 Mean Excess Function

Given a high threshold η0, suppose that the excess y = x − η0 follows a GPD with
parameter ξ and ψ(η0), where 0 < ξ < 1. Then, the mean excess of x over the
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Figure 7.12. Plots for IBM daily log returns from January 2, 2001 to December 31, 2010. (a)

QQ-plot of excess returns over the threshold 1% for negative returns and (b) the mean excess

plot.

threshold η0 is the expectation of a random variable Y whose CDF is given in Equation
(7.38). With some algebra, one can show that

E (x − η0|x > η0) = ψ(η0)

1 − ξ
.

For any η > η0, define the mean excess function e(η) as

e(η) = E (x − η|x > η) = ψ(η)

1 − ξ
= ψ(η0) + ξ(η − η0)

1 − ξ
.

In other words, for any y > 0,

e(η0 + y) = E [x − (η0 + y)|x > η0 + y] = ψ(η0) + ξy

1 − ξ
.

Thus, for a fixed ξ , the mean excess function is a linear function of y = η − η0. This
result leads to a simple graphical method to infer the appropriate threshold value η0
for the GPD. Define the empirical mean excess function as

eT (η) = 1

Nη

Nη∑
i=1

(xti − η), (7.39)
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where Nη is the number of returns that exceed η and xti are the values of the cor-
responding returns. See the next section for more information on the notation. The
scatterplot of eT (η) against η is called the mean excess plot , which should be lin-
ear in η for η > η0 under the GPD. The plot is also called mean residual life plot .
Figure 7.12b shows the mean excess plot of the negative daily IBM log returns. It
shows that, among others, a threshold of about 1% is reasonable for the negative return
series. In the evir package of R, the command for mean excess plot is meplot.

7.8.3 Estimation

Consider a given high threshold η, we can obtain the probability density function of
the generalized Pareto distribution by taking derivative of CDF in Equation (7.38)
with respect to y . This pdf can, in turn, be used to estimate the parameters ξ , μ, and
σ via the maximum likelihood method under the framework of point processes. See
Smith (1989), Smith and Shively (1995), and Tsay (2010, Chapter 7) for more details.
To demonstrate, consider again the loss variable xt = −rt , where rt is the daily log
returns of IBM stock from January 2, 2001 to December 31, 2010. Table 7.3 shows
the estimation results for various thresholds. From the table, the estimate of ξ is only
marginally significant at the 5% level when the threshold is 1.2%.

The results of Table 7.3 are obtained by using the comment pot of the evir
package of R. The program also provides various plots for model checking. In this
particular instance, the plots indicate that the assumption of independent observations
is questionable. This is understandable in light of the volatility clustering commonly
seen in asset returns. With the estimated parameters, one can calculate the risk mea-
sures. This is done by the command riskmeasures in R. For the long position of
$1 million on IBM stock, we have

VaR0.95 = $25, 855, ES0.95 = $39, 625,

for the first trading day of 2011 when the threshold of 1% is used. If the threshold is
1.2%, we have

VaR0.95 = $26, 115, ES0.95 = $39, 603.

Finally, for threshold of 0.8%, we have

VaR0.95 = $25, 866, ES0.95 = $39, 620.

TABLE 7.3. Maximum Likelihood Estimates of the Generalized Pareto Distribution For
Negative Daily Log Returns of IBM Stock from January 2, 2001 to December 31, 2010

η n.exceed Shape ξ Scale σ Location μ ψ(η)

1 504 0.107(0.042) 0.009(0.001) −0.006(0.001) 0.011
1.2 410 0.075(0.044) 0.010(0.001) −0.007(0.002) 0.011
0.8 610 0.106(0.039) 0.009(0.001) −0.006(0.001) 0.010
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From these results, we see that the risk measures are relatively stable for the three
choices of threshold. Compared with the VaR of Example 7.8 that uses the traditional
EVT , the POT approach provides a more stable VaR calculation.

R Demonstration Using POT Commands. Output edited. Also, beta = sigma
+xi(eta-mu), which is ψ(η) of the text.

> da=read.table("d-ibm-0110.txt",header=T)
> ibm=log(da[,2]+1)
> xt=-ibm
> m1=pot(xt,threshold=0.01)
> m1
$n
[1] 2515
$period
[1] 1 2515
$data

[1] 0.01530858 0.01074553 0.01139063 .....
attr(,"times")

[1] 3 6 10 .....
$span
[1] 2514
$threshold
[1] 0.01
$p.less.thresh
[1] 0.7996024
$n.exceed
[1] 504
$par.ests

xi sigma mu beta
0.107268254 0.008914461 -0.005634968 0.010591597

$par.ses
xi sigma mu

0.0415025597 0.0009052881 0.0012156539
$intensity
[1] 0.2004773
$converged
[1] 0
> plot(m1)
Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
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8: plot: Go to GPD Plots
Selection: 0

> riskmeasures(m1,c(0.95,0.99))
p quantile sfall

[1,] 0.950 0.02585540 0.03962479
[2,] 0.990 0.04744964 0.06381374
> riskmeasures(m2,c(0.95,0.99)) % Threshold=0.012

p quantile sfall
[1,] 0.950 0.02611524 0.03960353
[2,] 0.990 0.04745886 0.06267327
> riskmeasures(m3,c(0.95,0.99)) % Threshold=0.008

p quantile sfall
[1,] 0.950 0.02586561 0.03962012
[2,] 0.990 0.04744180 0.06376612

7.8.4 An Alternative Parameterization

As mentioned before, for a given threshold η, the GPD can also be parameterized
by the shape parameter ξ and the scale parameter ψ(η) = α + ξ(η − β). This is the
parameterization commonly used in GPD estimation. For instance, it is used by the
command gpd in the evir package of R. Specifically, (xi,beta) of R corresponds to
(ξ , ψ(η)) of this chapter. For illustration, consider the daily negative IBM log return
series from 2001 to 2010. The results of R with command gpd are given below.

R Demonstration. Data are negative daily IBM log returns. Output edited.

> library(evir)
> da=read.table("d-ibm-0110.txt",header=T)
> ibm=log(da[,2]+1)
> xt=-ibm
> m1gpd=gpd(xt,threshold=0.01)
> m1gpd
$n
[1] 2515
$data
[1] 0.01530858 0.01074553 0.01139063 .....

$threshold
[1] 0.01
$p.less.thresh
[1] 0.7996024
$n.exceed
[1] 504
$method
[1] "ml"
$par.ests

xi beta
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0.10703752 0.01059601
$par.ses

xi beta
0.0544269528 0.0007255951
$converged
[1] 0
$nllh.final
[1] -1733.994

> names(m1gpd)
[1] "n" "data" "thresh-

old" "p.less.thresh"
[5] "n.exceed" "method" "par.ests" "par.ses"
[9] "varcov" "information" "converged" "nllh.final"

> par(mfcol=c(2,2))
> plot(m1gpd)
Make a plot selection (or 0 to exit):

1: plot: Excess Distribution
2: plot: Tail of Underlying Distribution
3: plot: Scatterplot of Residuals
4: plot: QQ-plot of Residuals

Selection: 0
> riskmeasures(m1gpd,c(0.95,0.99))

p quantile sfall
[1,] 0.950 0.02585941 0.03962658
[2,] 0.990 0.04745161 0.06380699

As expected, the results are very close to those in Table 7.3. The estimates of
ξ and ψ(η) are 0.107(0.054) and 0.0106(0.0007), respectively, where the number in
parentheses denotes standard error. The minor difference is likely due to different
optimization methods used in estimation. Figure 7.13 shows the diagnostic plots for
the GPD fit to the daily negative log returns of IBM stock. The QQ-plot (Fig. 7.13d)
and the tail probability estimate (in log scale and in the Fig. 7.13b) show some minor
deviation from a straight line, indicating that further improvement is possible.

From the conditional distributions in Equations (7.36) and (7.37) and the GPD in
Equation (7.38), we have

F (x) − F (η)

1 − F (η)
≈ Gη,ψ(η)(y),

where x = y + η with y > 0. If we estimate the CDF F (η) of the losses by the
empirical CDF, then

F̂ (η) = T − Nη

T
,



380 VALUE AT RISK

0.01 0.02 0.05 0.10

0.
0

0.
4

0.
8

x (on log scale)

(a) (c)

(d)(b)

0.01 0.02 0.05 0.10

x (on log scale)

Fu
(x

–u
)

5e
–0

5
5e

–0
3

1–
F

(x
) 

(o
n 

lo
g 

sc
al

e)

0 100 300 500

0
1

2
3

4
5

6
2

0
4

6

Ordering

R
es

id
ua

ls

0 1 2 3 4 5 6

Ordered data

E
xp

on
en

tia
l q

ua
nt

ile
s

Figure 7.13. (a–d) Diagnostic plots for GPD fit to the daily negative log returns of IBM stock

from January 2, 2001 to December 31, 2010.

where Nη is the number of exceedances of the threshold η and T is the sample size.
Consequently, by Equation (7.38),

F (x) = F (η) + G(y)[1 − F (η)]

≈ 1 − Nη

T

[
1 + ξ(x − η)

ψ(η)

]−1/ξ

.

This leads to an alternative estimate of the quantile of F (x) for use in VaR calculation.
Specifically, for a small upper tail probability p, let q = 1 − p. Then, by solving for
x , we can estimate the q th quantile of F (x), denoted by VaRq , by

VaRq = η − ψ(η)

ξ

⎧⎨
⎩1 −

[
T

Nη

(1 − q)

]−ξ
⎫⎬
⎭ , (7.40)

where, as before, η is the threshold, T is the sample size, Nη is the number of
exceedances, and ψ(η) and ξ are the scale and shape parameters of the GPD distri-
bution. This method to VaR calculation is used in R.

For the generalized Pareto distribution, ES assumes a simple form. Specifically,
for a given tail probability p, let q = 1 − p and denote the VaR by VaRq . Then, the
ES is defined by

ESq = E (x |x > VaRq) = VaRq + E (x − VaRq |x > VaRq). (7.41)
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Using properties of the GPD shown in Section 7.8.2, we have

E (x − VaRq |x > VaRq ) = ψ(η) + ξ(VaRq − η)

1 − ξ
,

provided that 0 < ξ < 1. Consequently, we have

ESq = VaRq

1 − ξ
+ ψ(η) − ξη

1 − ξ
.

To illustrate the VaR and ES calculations, we again use the daily negative log returns
of IBM stock with threshold 1%. The results are given in the prior R demonstration.
From the output, the VaR values for the financial position of $1 million are $25,859
and $47,452 for the tail probability of 0.05 and 0.01, respectively. These two values
are essentially the same as those given in Example 7.8 that are based on the command
pot. The ESs for the financial position are $39,627 and $63,807, respectively, for the
tail probability of 0.05 and 0.01.

Remark. The POT and traditional EVT methods discussed assume that the loss vari-
able xt is homogeneous, indicating that the risk measures are evaluated by the loss
data alone. In practice, the loss variable xt could form a nonhomogeneous process that
depends on some explanatory variables such as the VIX index or the volatility of the
asset under study. The POT approach can be generalized to handle nonhomogeneous
loss process xt . See, for instance, Smith (1989) and Tsay (2010, Chapter 7). Interested
readers are referred to Tsay (2010) for demonstration of such an application. �

7.9 THE STATIONARY LOSS PROCESSES

Finally, we briefly mention the adjustment needed in calculating risk measures when
the loss process {xt } is a strictly stationary time series. See O’Brien (1987). The rela-
tionship between F∗(x) of the maximum of a stationary time series and F̃∗(x) of its iid
counterpart given in Equations (7.29) and (7.28) can be used to calculate the VaR of
a financial position when the associated log returns form a stationary time series.
Specifically, from P(x(n) ≤ un) ≈ [F (x)]nθ , the (1 − p)th quantile of F (x) is the
(1 − p)nθ th quantile of the limiting extreme value distribution of x(n). Consequently,
the VaR of Equation (7.35) based on the EVT becomes

VaR =
⎧⎨
⎩μn − σn

ξn

{
1 − [−nθ ln(1 − p)

]−ξn
}

if ξn 	= 0

μn − σn ln[−nθ ln(1 − p)] if ξn = 0,
(7.42)

where n is the length of subperiod. From the formula, we may underestimate the VaR
if the extremal index is overlooked.

As an illustration, again consider the negative daily log returns of IBM stock from
January 2, 2001 to December 31, 2010. Figure 7.14 shows the estimates of extremal
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Figure 7.14. Estimates of extremal index for the daily negative log returns of IBM stock from

January 2, 2001 to December 31, 2010. Block size is 10 and K of the lower horizontal axis of

the plot denotes number of blocks whose maximum exceeds the threshold.

index obtained by the command exindex of the package evir in R. Because the
serial correlations of daily IBM log returns are small, we chose a block size 10 in the
estimation. Note that this block size is different from that used in the traditional EVT
approach to estimate the generalized extreme value distribution. From the plot, we see
that with threshold of 1%, the extremal index is about θ̂ = 0.72. With this estimate,
the 1% VaR for the long position of $1 million on the stock for the next trading day
becomes $44,449 for the case of choosing n = 21 days in parameter estimation. As
expected, this is higher than the value $39,242 of Example 7.8 when the extremal
index is neglected.

R Demonstration

> library(evir)
> help(exindex)
> m1=exindex(xt,10) % Estimate the extremal index of Figure 7.10.
> % VaR calculation.
> v1=1.966-(1.029/.251)*(1-(-21*.72*log(.99))^(-.251))
> v1
[1] 4.444898
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EXERCISES

1. Consider a long position of $1 million on the Apple stock. To assess the
risk of the position, we employ daily returns of the stock from January 2,
2001 to September 30, 2011 for 2704 observations. The daily simple returns
are obtained from CRSP and in the file d-aapl-0111.txt. Let the tail
probability be p = 0.01. Compute the VaR and ES of the position for the next
trading day and the next 10 trading days using the following methods:

(a) The RiskMetrics method. Write down the fitted special IGARCH(1,1)
model.

(b) A Gaussian GARCH model. Write down the fitted model.

(c) A GARCH model with a standardized Student-t innovations. Write down
the fitted model. [You should use simulation to compute VaR and ES for
the next 10 trading days based on the fitted model.]

2. Again, consider the position and data of Exercise 1. Compute the VaR for the
next trading day using the following methods:

(a) Empirical quantile with p = 0.05 and 0.01.

(b) Quantile regression with 1 − p = 0.95 and 0.99 using lag-1 volatility of
a Gaussian GARCH(1,1) model and lag-1 absolute value of the log return
as predictors. Write down the fitted quantile regression. Are the estimates
statistically significant at the usual 5% level?

3. Again, consider the position and data of Exercise 1. Answer the following
questions:

(a) Obtain estimates of μ, σ , and ξ using the traditional EVT with subperiod
length n = 21 and 42, respectively.

(b) Use the estimates to compute VaR0.95 and VaR0.99 for the next trading day
and the next 10 trading days.

4. Again, consider the position and data of Exercise 1. Apply the POT method
to calculate risk measures for the position:

(a) Use threshold 2.5%. Write down the estimates, including standard error,
and compute the corresponding VaR0.99 and ES0.99.

(b) Use threshold 2%. Write down the estimates and their standard errors,
obtain the QQ-plot of the data versus exponential quantiles, and compute
the corresponding VaR0.99 and ES0.99.

(c) Are the risk measures sensitive to the choice of threshold? Why?

5. Again, consider the position and data of Exercise 1. In this exercise, apply
the GPD with threshold 2.5% to obtain the parameter estimates and the cor-
responding diagnostic plots. Compute VaR0.99(10) of the position, that is, the
VaR for the next 10 trading days.

6. Consider the daily log returns of Apple stock and the log returns of Bank of
America Merrill Lynch U.S. Corp AAA Index Value from January 3, 2001
to September 30, 2011. The bond index has more daily observations, but we
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match the dates before computing the daily log returns of bond index. The
data are in d-aaplbnd-0111.txt. Consider a long position of $1 million
consisting of 50-50 on stock and AAA bond. Compute VaR and ES of the
position for the next trading day using the following methods:
(a) The RiskMetrics method.

(b) The econometric approach using Gaussian GARCH(1,1) model.
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Hsing T, Hüsler J, Leadbetter MR. On the exceedance point process for a stationary sequence.
Probab Theory Relat Fields 1988; 78: 97–112.

Jenkinson AF. The frequency distribution of the annual maximum (or minimum) of meteoro-
logical elements. Q J R Meteorol Soc 1955; 81: 158–171.

Jorion P. Value at Risk: The New Benchmark for Managing Financial Risk. 3rd ed. Chicago:
The McGraw-Hill; 2006.



REFERENCES 385

Koenker RW, Bassett GW. Regression quantiles. Econometrica 1978; 46: 33–50.

Koenker RW, D’Orey V. Computing regression quantiles. Appl Stat 1987; 36: 383–393.

Klugman SA, Panjer HH, Willmot GE. Loss Models: From Data to Decisions. Hoboken (NJ):
John Wiley & Son; 2008.

Leadbetter MR. On extreme values in stationary sequences. Zeitschrift für Wahrscheinlichkeit-
sthorie und Verwandte Gebiete 1974; 28: 289–303.

Leadbetter MR. Extremes and local dependence in stationary sequences. Zeitschrift für
Wahrscheinlichkeitsthorie und Verwandte Gebiete 1983; 65: 291–306.

Leadbetter MR, Lindgren G, Rootzén H. Extremes and Related Properties of Random Sequences
and Processes. New York: Springer Verlag; 1983.

Longerstaey J, More L. Introduction to RiskMetrics™. 4th ed. New York: Morgan Guaranty
Trust Company; 1995.

Longin FM. The asymptotic distribution of extreme stock market returns. J Bus 1996; 69:
383–408.

Longin FM. Optimal margin level in futures markets: extreme price movements. J Futures Mark
1999a; 19: 127–152.

Longin FM. From value at risk to stress testing: the extreme value approach. Working paper,
Centre for Economic Policy Research, London, UK; 1999b.

McNeil AJ, Frey R, Embrechts P. Quantitative Risk Management: Concepts, Techniques and
Tools. Princeton (NJ): Princeton University Press; 2005.

O’Brien GL. Extreme values for stationary and Markov sequences. Ann Probab 1987; 15:
281–291.

Pickands J. Statistical inference using extreme order statistics. Ann Stat 1975; 3: 119–131.

Smith RL. Extreme value analysis of environmental time series: an application to trend detection
in ground-level ozone (with discussion). Stat Sci 1989; 4: 367–393.

Smith RL. Measuring risk with extreme value theory. Working paper, Department of Statistics,
University of North Carolina at Chapel Hill; 1999.

Smith RL, Shively TS. A point process approach to modeling trends in tropospheric ozone.
Atmos Environ 1995; 29: 3489–3499.

Tsay RS. Analysis of Financial Time Series. 3rd ed. Hoboken (NJ): John Wiley & Sons; 2010.

Zivot E, Wang J. Modeling Financial Time Series with S-Plus. New York: Springer-Verlag;
2003.





INDEX

ACD model, 301
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generalized Gamma, 303
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Airline model, 101
Akaike information criterion (AIC), 61
APARCH model, 224
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ARCH model, 185

estimation, 189
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normal, 189
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Autocorrelation, 45
Autocorrelation function (ACF), 45
Autocovariance, 43
Autoregressive integrated moving-average

(ARIMA) model, 91
Autoregressive model, 51

estimation, 64
forecasting, 67
order, 60
stationarity, 59

Autoregressive moving-average (ARMA) model,
78

forecasting, 84

Back-shift operator, 55
Backtesting, 121, 135, 150
Bar chart, 27
Bartlett’s formula, 45
Bayesian information criterion (BIC), 62
bid-ask bounce, 279
bid-ask spread, 279
Bonds
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current yield, 8
par value, 8
yield to maturity, 8

Business cycle, 56

Capital asset pricing model, 256
Characteristic equation, 59
Characteristic root, 56, 59
Co-integration, 112
Compounding, 4
Conditional distribution, 21
Conditional forecast, 68
Conditional likelihood method, 74
Conditional value at risk, 335
Correlation coefficient, 43

Data
3M stock return, 24, 81, 88
CAT returns, 246
CSCO returns, 246
GE returns, 246
BA Merrill Lynch AAA total return index, 343
CAT transactions, 280, 295, 298, 304
Coca Cola’s earnings, 98
CRSP monthly value-weighted idnex, 118
crude oil price, 129
decile 10 monthly returns, 45
Dollar-Euro exchange rate, 184
equal-weighted index, 73, 74, 118
gasoline price, 129
global temperature anomalies, 140
IBM daily log returns, 339
IBM monthly returns, 48
IBM stock return, 49, 231, 346, 350, 354, 363,

369
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