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1. Introduction

If anything can be learned from past financial crises, it is that risk should be a key consideration

in any financial decision. Risk evaluation has become an important requirement in asset pricing

and allocation. Quantifying financial risk, however, is easier said than done. Value-at-Risk (VaR),

despite its shortcomings, has risen to a prominent role as a measure of financial risk for a number of

reasons. Besides the ease of computation and its intuition, VaR is also a standard requirement for

assessing financial risk in the Basel III framework (Basel Committee 2010). As risk is commonly

understood to be associated with the second moment of a returns distribution, a plethora of models

concerned with capturing the time depent volatility have been put forward. Of these techniques,

the GARCH-type models have emerged as the standard. A new General Autoregresseive Score

(GAS) models have emerged recently as an alternative to GARCH. This paper aims to fit models

from both classes to South African financial data, and to compare the VaR estimations in order to

determine the validity of GAS models in this type of application. Section 2 provides a brief overview

of the literature and section exposits the methodology used for VaR estimation and prediction.
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The nature of the data is then discussed in section 4 after which the results are dislosed in secton

5. Section 6 concludes.

2. Literature Review

VaR

Risk considerations have become a key focus of portfolio management since Markowitz (1952)

wrote one of the influential papers on diversification. Subsequent literature has expanded since

then, placing a great emphasis on modeling the second moment and driving risk management with

statistical evaluations. Of these, the VaR has emerged as an industry benchmark (Jorion 2007).

This benchmark status has come about largely due to requirement by financial regulation of the

use of VaR measures (Basel Committee 2010). The use of the VaR expanded at a time when calls

were being made for simpler and more transparent measures of risk given the contribution of the

misappraisal of risk to some financial crises (Jorion 2007). Another reason for the popularity of

VaR is that it allows for the aggregation across trading positions to produce a single measure of

risk (Brooks and Persand 2003). There exists a substantial literature on the detailed exposition

of VaR, concerned with th characterisation, the calculation and the estimation thereof, among

other things. Examples of this are Jorion (2007), Dowd (2007) and Saunders (2000). In particular,

VaR measures are mostly concerned with, and modelled for negative returns. The rationale for

and technicalities of this are covered by such as Goorbergh, Vlaar, and others (1999), Giot (2003)

and Vlaar (2000). Despite its popularity, it also has some major shortcomings. One of these is

that, although it quantifies the probability that losses over a particular horizon will be less than

a particular level considered, it does npt give an indication of the severity of these losses. There

are also several other shortcomings in the form failing to account for risks resulting the change

in financial positions, event and stability risks and the risk of exceedences (see Jorion (2007) for

more detail.) Nevertheless, the argument can be made that although this measure is not perfect,

it is better than having nothing to work with at all.
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VaR estimations are done using models that place emphasis on the second moment. A standard

model type used for VaR estimations are the GARCH models. Pioneered by Bollerslev (1986),

this class of models have evolved into a diverse collection of specifications such as the IGARCH,

APARCH, EGARCH and GJR-GARCH models (see Engle and Bollerslev (1986), Nelson (1991),

Ding, Granger, and Engle (1993) and Baillie, Bollerslev, and Mikkelsen (1996)). Fianancial applica-

tions seem to favour leptokurtic distributions and asymmetric responses as given by the APARCH

model in Giot and Laurent (2003) who examin U.S. stock market data. Angelidis, Benos, and

Degiannakis (2004) also find evidence favouring skew leptokurtic distributions, but still find the

original GARCH estimation superior. In VaR studies done for South Africa, Bonga-Bonga and

Mutema (2009) show that RiskMetrics approach, which is rooted in an IGARCH specification,

provide poor VaR estimates and argue in favour of an EGARCH specification. McMillan and

Thupayagale (2010) also conclude poor RiskMEtrics results, but show that controlling for volatil-

ity persistence in addition to asymmetries, a FIEGARCH specification, yields better estimates.

These papers mostly apply methodolgies to aggregated stock market indices.

3. Methodology

3.1. Value-at-Risk

The VaR measure can be defined and calculated using the loss random variable for a given financial

position over a predefined holding period (Tsay 2014). If Pt represents the observed value of the

portfolio at time t, then let rt = log(Pt/Pt−1) denote the continuously compounded portfolio

log-returns from period t− 1 to t. In particular we are interested in the market risk of a financial

position that is held for a given time horizon, τ . This risk can be assessed by considering the

potential losses facing the portfolio at hand over this period. Financial loss is quantified by

negative returns, −rt, which warrants the use of the probability distribution of −rt to assess
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the downside risk of the financial position1. Denote the outcomes from this loss distribution by

Lt(τ), which is the loss random variable of a financial position for a given τ . Note that no specific

underlying distribution is distinguished here as it is assumed that the particulars of the returns

distribution has been determined at the outset of the analysis. Finally, let Fτ (l) represent the

cumulative distribution function (CDF) of the loss distribution. The t subscript is dropped here

for the sake of convienient notation, but it is worth noting that that the CDF does depend on t

(Tsay 2014).

VaR metrics indicate the portfolio’s loss (or return) that is expected to be exceeded with a given

probability α, which is known as the risk level (Ardia, Boudt, and Catania 2016b). Larger losses

are likely to occur with lower probability, which is why a small α is chosen, usually one or five

percent (i.e. α ∈ [0.01, 0.05]). The VaR over horizon τ given probability α can then be defined

as

V aR1−α
t = inf [l ∈ R : Fτ (l) ≤ 1− α] (3.1)

where inf is the infimum specifying the smallest real number l able to satisfy condition 3.1. From

this definition we get that Fτ (V aR1−α
t ≥ (1−α), which implies that, with probability (1−α),

the potential loss incurred from holding a particular financial position over τ will be less than or

equal to V aR1−α
t :

P [Lt(τ) ≤ V aR1−α
t ] ≥ (1− α) (3.2)

Naturally, this implies that

1Viewing returns from only a loss perspective simply means that positive returns are seen as negative losses.
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P [Lt(τ) > V aR1−α] ≤ α (3.3)

which means that V aR1−α
t can be chosen such that the probability of incurring a loss greater than

V aR1−α
t over τ is at most α. If a continuous loss random variable is a assumed, then mapping

3.3 to the CDF Fτ (l) has two implications. The first is that the VaR is concerned with the upper

tail property of the loss CDF. The second is that a VaR measure is really just the (1 − α)th
quantile of the loss ditribution or, alternatively, the 100(1− α)th percentile of this distribution

(Tsay 2014, 330).

VaR can be measured using a parametric or non-parametric approach. This paper employs the

former, focusing on modelling the entire returns distribution and the volatility dynamics (Xekalaki

and Degiannakis 2010). Not only is the calculation in the parametric approach simple and conve-

nient, it tends to be more accurate than its non-parametric counterpart (Jorion 2007). Under the

assumption that −rt ∼ N (0, 1), a parametric VaR that varies over time is then calculated2 as

V aR1−α
t = µt + z1−ασt (3.4)

with z1−α denoting the (1 − α)th quantile (Tsay 2014). In the case of α = 0.05, for example,

we obtain z0.95 ≈ 1.645. If this is the VaR for a portfolio worth R100 000, there would be a 95%

confidence level that losses would not exceed R1 645. Alternatively, a loss higher than 1.645% of

the portfolio would only expected on 5 out of 100 days (Xekalaki and Degiannakis 2010). Similar

results are obtainable for any location-scale family such as the Student-T or Skewed Student-T

distributions (Tsay (2014) & McNeil, Frey, and Embrechts (2015)).

2A more detailed example can be found in Xekalaki and Degiannakis (2010, 377)
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The main aim of a VaR evaluation is prediction. A VaR is, after all, a prediction concerning

potential loss of a particular portfolio over some holding period. Consequently, it is calculated

using the predictive distribution of the loss variable. This entails forecasting the distribution

parameters, such as µ and σ in the case of the normal distribution, which affect the accuracy of

the VaR calculation. Following a prediction exercise it is also necessary to see how will a specific

model fits the data, prompting a consideration among alternatives.

3.2. VaR Estimation and Prediction

The parametric approach to VaR modelling subsumes the econometric techniques concerned with

modelling and predicting the underlying distributions and their first and second order moments.

Examples of models suited to VaR prediction include the RiskMetrics model from Longerstaey

and More (1995), the popular general autoregressive conditional heteroskedastic (GARCH) family

of models and the more recent general autoregressive score (GAS) models. GARCH models are

purported to be the most successful technique for modelling VaR to date (Xekalaki and Degiannakis

(2010) & Angelidis, Benos, and Degiannakis (2004)). A new class of score driven models developed

by Creal, Koopman, and Lucas (2013), however, is emerging as a worthy alternative to in terms

of volatility and VaR modelling. As GARCH models have emerged as a standard medium of VaR

analysis, it is deemed appropriate to use this class of models as a comparator for GAS models.

Hence the use of only these two model types. The RiskMetrics approach will not be considered

here as its exponentially weighted moving average approach is just a special case of an IGARCH

specification. Moreover, RiskMetrics has been shown to produce poor VaR estimates in comparison

to other GARCH models (Bonga-Bonga and Mutema (2009) & Xekalaki and Degiannakis (2010)).

This analysis defines daily financial returns as rt = log(Pt/Pt−1) and assumes a stochastic

process in rt:
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rt = µt + εt;∼ D(0, σ2
t ) (3.5)

Where µt = E(rt|Ωt−1), σ2
t = E(ε2

t |Ωt−1), D(0, σ2
t ) denotes a conditional probability distri-

bution with a zero mean and variance σ2 and Ωt−1 denotes the set of information available at

t− 1.

In the case of GARCH models, VaR estimations are obtained through the application of the

ARIMA-GARCH framework to simultaneously model the first and second moment processes, µ and

σ2. The interest, however, is in the accuracy of the estimation of the second moment, or variance

process σ2. Consider the original GARCH(p,q) specification for the variance as an autoregressive

process in Bollerslev (1986):

σ2
t = α0 +

q∑
j=1

αjε
2
t−j +

p∑
j=1

βjσ
2
t−j (3.6)

This specification provides some important features needed for a model of financial returns. Firstly,

3.6 allows for a heavier tail distribution than that of the normal distribution which is typically

the case in financial returns data. Secondly, 3.6 captures the effect of volatility clustering which is

also characteristic of financial time series. Third, this model manages to provide a parsimonious

description of volatility evolution. Engle and Bollerslev (1986) note that most GARCH(1,1) es-

imations on returns data returned α + β values close to unity indicating a high persistence in

volatility. The authors subsequently impose a restriction of unity on the persistence term from

equation 3.6, requiring
∑q
j=1 αj + ∑p

j=1 βj = 1 in what is known as the IGARCH(p,q) model.

Essentially a unit root process is imposed on the variance structure to to control for persistence

(Enders 2010).
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Another prominent feature in financial time series are asymmetric responses in financial returns

to leverage effects such as positive shocks (good news) and negative shocks (bad news). Empirical

support for this is provided in Giot and Laurent (2003). Nelson (1991) proposes the EGARCH(p,q)

model that uses weighted innovations capture these asymmetries between positive and negative

asset returns. The weighted innovation in an EGARCH(p,q) model is given by

ln(σ2
t ) = α0 +

1 +
q∑
i=1

αiL
i

1 +
p∑
i=1

βjL
j

−1

(3.7)

×
(
γ1
εt−1
σt

+ γ2

[∣∣∣∣∣εt−1
σt

∣∣∣∣∣− E
(
εt−1
σt

)])

where the terms
∣∣∣∣εt−1
σt

∣∣∣∣ and (εt−1
σt

)
allow for an asymmetrical distribution to be assumed for σ2

t .

In addition, γ1 will show the sign effect and γ2 indicates the magnitude of the shock. A negative γ1

is indicative of a leverage effect in the series (Xekalaki and Degiannakis 2010). This type of model

offers the advantage of having both the level and sign of shocks affect the volatility persistence. It

also does not need positive definite restrictions as do GARCH and IGARCH.

Glosten, Jagannathan, and Runkle (1993) provides a simpler specification compared to 3.7 that

also incorporates asymmetric reactions to volatility persistence which is also easily interpreted.

The GJR-GARCH(p,q) model, often used as an alternative to EGARCH, is given by

σ2
t = α0 +

q∑
i=1

(αiε2
t−i) +

q∑
i=1

(γiI(εt−i < 0)ε2
t−i) +

p∑
j=1

(βjσ2
t−j) (3.8)

where the indicator term I(εt−i < 0) equals unity when εt−i is negative, and zero otherwise.

Consequently, positive shocks affect second order persistence through only α1 and negative shocks

work through α1 + γ1 when γi is positive. This mechanism allows for the presence of leverage
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effects in returns volatility.

The final GARCH-type specification that will be estimated is the APARCH model of Ding,

Granger, and Engle (1993):

σδt = α0 +
q∑
i=1

αi|εt−1| − γiεδt−i +
p∑
j=1

αjσ
δ
t−j (3.9)

Used often in practice, 3.9 utlises a Box-Cox (Box and Cox 1964) power transformation in the

form of the power parameter δ that helps to improve the goodness of fit of the model. As a result,

this power function is especially useful when considering prediction. Save for a few special values,

an appropriate interpretation of δ is not easy to come by. Some of the other GARCH models,

however, can be distilled from certain δ values. If δ = 1 and γi the APARCH uses the volatility

directly in equation, and reduces to a GARCH specification (Tsay 2014). In the case of δ = 0 the

model becomes the EGARCH of Nelson (1991). There is still scope for the inclusion of GARCH

models with fractal integration components such as the FIGARCH model of Baillie, Bollerslev, and

Mikkelsen (1996) and the FIAPARCH model of Tse (1998). These models, however, are omitted

from this analysis.

The GAS model, recently introduced by Creal, Koopman, and Lucas (2013) for modeling the

conditional variance of financial returns, also possesses the potential to provide formidable VaR

estimates. Like GARCH models, GAS specifications also take an observation-driven approach

to modeling time-varying parameters. GAS models are built on a framework for time-varying

parameters which is based on the score function of the predictive model density at time t. In

fact, if the score function is scaled appropriately, other standard observation-driven and stochastic

volatility models such as the GARCH specifications can be recovered.

Formally, a generic GAS specification is as follows. Let, at time t, rt be an N ×1 vector denoting

the dependent variable of interest, let ft denote the time-varying parameter vector, let xt be a
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vector of exogenous variables (covariates) and let θ be a vector of static parameters. Consequently,

we can define Y t = (y1, ..., yt), F t = (f0, f1, ..., ft) and X t = (x1, ..., xt). Therefore, the

information set at time t is givnen by [ft, Ft], where

Ft =
[
Y t−1, F t−1, X t

]
for t = 1, ..., n

Assume that rt is generated by the observation density

rt ∼ p (yt|ft,Ft; θ) (3.10)

We also assume the updating mechanism by which the time-varying parameter ft evolves is an

autoregressive process

ft−1 = ω +
p∑
i=1

Aist−i+1 +
q∑
j=1

Bjft−j+1 (3.11)

where ω is a vector of constants, coefficient matrices Ai and Bj have appropriate dimensions

for i = 1, .., p and j = 1, ..., q, while st is an appropriate function of past data, st =
st(yt, ft, Ft; θ). Coefficients that are unknown in 3.11 are functions of θ. This means that

ω, Ai and Bj are all functions of θ for all i and j. When a new observation rt is realised,

the time-varying parameter ft is updated to period t+ 1 using 3.11 with

st = St · ∇t where∇t = ∂lnp(yt|ftF ; θ)
∂ft

, St = S(t, ft,Ft; θ) (3.12)
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where S(·) is a matrix function. It can be seen from the equations above that the driving mecha-

nism, equation 3.11, is dependent on the scaled score vector, equation 3.12. An important feature

to note here is that the score depends on the entire density and not just on the the first and

second moments of observation series rt (Creal, Koopman, and Lucas 2013, 779). Finally, a form

of scaling that depends on the variance of the score can also be instituted. An example given by

Creal, Koopman, and Lucas (2013) is one where the scaling matrix is defined as

St = I−1
t|t−1, I

−1
t|t−1 = Et−1

[
∇t∇′t

]
(3.13)

Equations 3.10 to 3.13 are considered to consitute the GAS(p,q) model framework. More detail

and additional features such as incorporating fractal integration in this framework can be found

in Creal, Koopman, and Lucas (2013). Our GAS prediction follows Ardia, Boudt, and Catania

(2016b), who also propose a model using a skewed Student-T conditional distribution.

3.3. Model Evaluation and Comparison

The fact that many alternative descriptions of the same data generating process are available

allows for the selection of the best fitting model. From the alternatives, a set of models superior

to the rest can be constructed where a hypothesis of equal predictive ability can be tested among

the models with better fit. Such a process is described in Hansen (2005). The equal predictive

ability (EPA) test statistic is calculated for an arbitrary loss function subject to weak stationarity

conditions. The implication of this is that models can be tested on different aspects, of which one

is the in-sample goodeness of fit. Formally, denote Yt as as series observation at time t, and denote

the estimate of that observation from model i by Ŷi,t. Also let the loss function of the ith model

be denoted by li,t and defined by
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li,t = l
(
Yt, Ŷi,t

)
(3.14)

which measures the difference between Ŷi,t and the a posteriori realisation of Yt. In the case of this

analysis, the loss series from all the estimated models for both GARCH and GAS frameworks that

will be compared are the VaR loss series as set out in González-Rivera, Lee, and Mishra (2004).

Consider a V aR1−α
t at time t with confidence level (1− α) with an information set Ωt−1. The

asymmetric VaR loss function can then be defined as

l(yt, V aR1−α
t ) = ((1− α)− d1−α

t )(yt − V aR1−α
t ) (3.15)

where d1−α
t = L(yt < V aR1−α

t ) represents the (1 − α)-quantile function (see Hansen and

Lunde (2005) for more detail). This series is used for backtesting.

Loss function 3.15 can be measured and compared to other such series in several ways. The analysis

makes use of Hansen (2005)’s model confidence set (MCS) procedure. In concept, this procedure

is simple. It starts with an initial set of models M̂0 with dimension m encompassing all the

specifications of the models that are to be considered. For a given confidence level (1−α), it then
draws out a smaller set, the superior set of models (SSM), M̂1−α that has a dimension m∗ < m,

with the ideal being m∗ = 1. Let dij,t represent the loss differential between two models i and j:

dij,t = li,t − lj,t where i, j = 1, ...,m and t = 1, ..., n (3.16)

Also, let
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di,t = (m− 1)−1 ∑
j∈M

dij,t i = 1, ...,m (3.17)

represent model i’s simple loss relative to any other model j at time t. For a given set of models,

M, the EPA hypothese can be stated as follows:

H0,M : cij = 0 for all i, j = 1, 2, ...,m (3.18)

H0,M : cij 6= 0 for some i, j = 1, ...,m

where ci,j = E(di,j) is infinite and time independent. Hansen, Lunde, and Nason (2011) construct

the following test statistic that can be be used to test the above hypotheses:

tij = dij√
ˆvar(dij)

(3.19)

where dij = m−1 ∑m
t=1 dij,t constitutes a measure of the relative sample less between any model

i and any model j, and ˆvar(dij) is a bootstrapped estimate of dij . In the application in this

analysis a block-bootstrap procedure of 5000 re-samples is specified. The block length p is simply

the maximum number of significant parameters obtained from an AR(p) process on all the dij
terms.

The EPA null hypothesis in 3.18 easily maps to the following test statistic:
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TR,M = maxi,j∈M |ti,j| (3.20)

with 3.20 defined as in 3.19. Using this test statistic, the MCS procedure eliminates the worst

model in a step-based, sequential testing method until the null of the EPA is accepted for all

models in the SSM. More detail on the specifics of this procedure can also be found in Bernardi

and Catania (2015). There are other methods for evaluating VaR forecasts such as the Dynamic

Quantile test (Engle and Manganelli 2004), Unconditional Coverage (Kupiec 1995) and Conditional

Coverage (Christoffersen 1998) which have not been considered.

4. Data

The data used in this analysis consists of daily returns data from March 21, 2002 to November 30,

2016 from the JSE All Share Index (ALSI) and contains a total of 3835 observations per series.

This dataset was obtained from Bloomberg, and also contains the daily market capitalisations of

each of the listed companies. The daily returns are calculated as rt = log(Pt/Pt−1). A market

capitalisation index is constructed so as to include the top 40 companies by market capitalisation.

The index reweighted on a monthly bases to account for survivorship bias. The index spans

companies across all sector of the ALSI. Table 4.1 contains descriptive statistics for the returns

series index.

StdDev Skew Kurt JBerra Min Max No_Obs

1 0.01 -0.09 3.88 2411.95 -0.08 0.08 3835.00

Table 4.1: Sample Statistics

The financial returns series shows only a slight negative skewness, but significant excess kurtosis.

The Jaques-Berra (JBerra in the table) rejects the null hypothesis of normality at both 95% and
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99% levels of significance. These characteristics can be confirmed visually by looking at the plots

in the Appedix (7), which indicate the presence of volatility clustering. The fatter tails in the

QQ-Plot, Figure 7.3 are indicative of a leptokurtic distribution with fatter tails. Also, this paper

builds upon the evidence provided in Katzke and Garbers (2016), who use a similar dataset, of

serial correlation in the second order disturbances. This warrants the use of the GARCH and GAS

frameworks. Furthermore, there seems to be enough evidence to justify the use of the Student-T

distribution in all the models.

5. Results

VaR predictions were conducted using the capitalisation-weighted index defined in section 4. For

the GARCH models, VaR is estimated in R using the rugarch package (Ghalanos 2013), and for

the GAS specification the GAS package (Ardia, Boudt, and Catania 2016a) is used to this end. We

follow Ardia, Boudt, and Catania (2016a) in using an out-of-sample window of 1000 observations

for the rolling window prediction, and re-estimate the parameters with the addition of each new

daily observation.

With respect to the estimation in this analysis, the GARCH models are respectively estimated with

GARCH(1,1), IGARCH(1,1), EGARCH(1,1), GJR-GARCH(1,1) and APARCH(1,1), all with an

ARIMA(2,0) mean process, to account for the high persistence in financial time series. We also

estimate a GAS(1,1) specification. all models are tested using both Student-T and skewed Student-

T distributions, even though the descriptives advocate for the use of the Student-T.
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Model v_M Rank v_R Loss

1 GAS_std -1.8551 1 0.0002 0.0003

2 GAS_sstd -1.8549 2 0.0002 0.0003

3 APARCH_std 0.4999 7 1.5901 0.0324

4 APARCH_sstd 0.4863 5 1.5825 0.0322

5 GJRGARCH_std 0.4815 4 1.5794 0.0322

6 IGARCH_sstd 0.5005 8 1.5910 0.0324

7 IGARCH_std 0.5036 9 1.5925 0.0325

8 GARCH_std 0.4752 3 1.5761 0.0321

9 GARCH_sstd 0.4942 6 1.5869 0.0323

10 EGARCH_std 0.5384 10 1.6124 0.0329

Table 5.1: MCS Results and Ranking

Table 5.1 above shows the results for the MCS procedure. What is surprising is that the EPA null

was not rejected for even the GARCH models at a 99% confidence level. Either this is really the

case for South African data, which is contrary to the literature (see Katzke and Garbers (2016)),

or there has emerged an error in the specification of the underying loss series. What can be

observed, though, is that the ranking procedure favours the GAS Student T prediction, which

does make intuitive sense give the descriptives in the previous section. The remaining scope for

research is quite large, with certain statistical backtests and other forecast comparison methods

left unchecked, leavong the results here with much to be desired.

6. Conclusion

VaR prediction is a key component of risk analysis, due to its simplicity and role in regulation.

Although VaR measures are not by any means an analytic utopia with regards to risk, a lot of

effort is being put into appraising these financial market risks as accurately as possible. This
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paper undertook to evaluate a new class of models, the GAS models, against standard GARCH

specifications. The process followed that of a standard risk evaluation in practice, namely fitting

an appropriate financial returns model to the data, running an out-of-sample VaR forecast and

comparing amongst the models with the best fit. GAS and GARCH estimations are done for

a market capitalisation index of the ALSI, after which VaR measures are computed, and these

estimations are compared using their loss functions. A model confidence set approach is used to

sequentially eliminate models until a superior set of models can be recovered. In this particular

case, however, results were slightly perplexing, although there is a silver liniing in that the top

ranking model, a Student-T GAS specification, fits the intuition of the descriptive statistics. More

research, however, is needed moving forward.

7. Appendix
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