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Abstract

Hierarchical Risk Parity (HRP) is a risk-based portfolio optimisation algorithm, which has been shown to
generate diversified portfolios with robust out-of-sample properties without the need for a positive-definite
return covariance matrix (Lopez de Prado 2016). The algorithm applies machine learning techniques to identify
the underlying hierarchical correlation structure of the portfolio, allowing clusters of similar assets to compete for
capital. The resulting allocation is both well-diversified over risk sources and intuitively appealing. This paper
proposes a method of fully exploiting the information created by the clustering process, achieving enhanced
out-of-sample risk and return characteristics. In addition, a practical approach to calculating HRP weights
under box and group constraints is introduced. A comprehensive set of portfolio simulations over 6 equity
universes demonstrates the appeal of the algorithm for portfolios consisting of 20 − 200 assets. HRP delivers
highly diversified allocations with low volatility, low portfolio turnover and competitive performance metrics.
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1. Introduction

Optimal capital allocation across assets is arguably one of the most widely discussed topics in quanti-
tative finance. Since the advent of modern portfolio theory introduced by Markowitz (1952), portfolio
optimisation has generally been framed as a quadratic programming problem considering the risk
(variance) and return characteristics of the underlying assets. Mean-variance optimisation (MVO)
forms the basis of most applied portfolio optimisation routines, due to its intuitive appeal and the-
oretical property as the pareto-optimal in-sample allocation (Kolm, Tütüncü, and Fabozzi 2014).
Despite its popularity, MVO has been subjected to important critiques (see Steinbach (2001) and Ru-
binstein (2002) for more comprehensive reviews). Sensitivity to measurement error, leading to poor
out-of-sample performance, as well as instability of the covariance matrix are important practical
concerns. The sample dependence of MVO has precipitated the development of purely risk-based allo-
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cation methods, which ignore error-prone return forecasts (Roncalli 2014). Risk parity and minimum-
variance methods exemplify this strategy, but often remain vulnerable to the instability-critique in
large N portfolios.

Hierarchical risk parity (HRP) is a risk parity allocation algorithm introduced by Lopez de Prado
(2016), which aims to address the short-comings of MVO portfolios. At its core HRP proposes a
hierarchical implementation of an inverse-variance allocation with weights calculated between clusters
of correlated asset returns. The method benefits from the out-of-sample robustness of risk parity
portfolios, and can be applied to singular covariance matrices, hence solving the stability problem.
Lopez de Prado (2016) shows that HRP achieves lower out-of-sample volatility and higher risk-adjusted
return than inverse-variance allocations. Apart from desirable quantitative properties, the method has
the intuitive appeal of allowing groups of related assets (as opposed to individual assets) to compete
for capital in the portfolio, improving diversification over risk sources. Apart from Lopez de Prado
(2016), variants of HRP have been presented by Alipour et al. (2016) and Raffinot (2016).

This paper introduces three modifications to the HRP algorithm of Lopez de Prado (2016): (i) A
method is proposed to impose weight constraints to individual assets or groups of assets, while main-
taining cluster-optimal allocations; (ii) Hierarchical clustering algorithms are compared to an efficient
genetic optimisation based alternative, demonstrating significantly improved performance under top-
down and optimisation-based approaches to clustering; (iii) Finally, the naive allocation hierarchy
proposed in Lopez de Prado (2016) is replaced by an algorithm capable of considering asset similarity
at the cluster edges, permitting a more complete exploitation of the information generated by the
cluster algorithm.

The HRP portfolio is benchmarked against conventional risk-based allocation techniques in a system-
atic manner using historical daily returns data from 6 equity universes. The portfolio backtest explores
the performance of HRP in portfolios of varying degree of N -diversification, with particular emphasis
placed on South African equity markets. HRP is found to achieve lower out-of-sample volatility and
higher risk-adjusted return than inverse-variance as well as naive portfolios, and is a close competi-
tor to the minimum-variance portfolio, but without the dependence on a positive-definite covariance
matrix. Furthermore, the HRP portfolio achieves superior diversification and low turnover. Proposed
modifications to the clustering and allocation approaches make better use of the hierarchical structure
of the covariance matrix and consequently improve out-of-sample volatility and risk-adjusted return
of the HRP allocation.

2. Hierarchical Risk Parity Algorithm

Conceptually, the HRP algorithm proposed by Lopez de Prado (2016) calculates inverse-variance
weights for groups of similar assets, iteratively applied to ever smaller sub-groups until each asset forms
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its own cluster. The approach is operationalised in three steps: (i) clustering, (ii) quasi-diagonalisation
and (iii) recursive bisection. In the following sub-sections, each step is briefly outlined alongside a few
proposed modifications, with a more detailed mathematical treatment provided in Appendix A.

2.1. Clustering

Clustering is a statistical partitioning technique which groups a set of N data series based on their
characteristics (Maimon and Rokach 2010). In the case of correlation clustering, the correlation
coefficient is deemed to be the relevant measure of similarity between the data series. The intuitive
appeal of a portfolio optimisation based on the clustered covariance matrix is the ability to allocate
capital to groups of similar assets. Thus rather than allowing individual assets to act as direct
substitutes, asset groups jointly compete for capital leading to a more compelling and robust allocation
result. Hierarchical clustering in particular has been widely applied in the financial literature (see Tola
et al. (2008) for an overview). Examples of applications include Tola et al. (2008) and Tumminello,
Lillo, and Mantegna (2010) who show that the stability characteristics of the covariance matrix can be
improved using linkage-based clustering filters, boosting the feasibility of MVO allocations for large
N portfolios. Mantegna (1999), Di Matteo, Aste, and Mantegna (2004) use clustering techniques to
infer the hierarchical structure of financial data series. Other applications include León et al. (2017),
who present a cluster-based MVO allocation.

In general, hierarchical clustering approaches can be subdivided into two broad parent categories:
agglomerative nesting (AGNES) and divisive analysis (DIANA) (Maimon and Rokach 2010). Ag-
glomerative nesting is a bottom-up procedure where objects initially represent individual clusters, and
are successively merged into larger clusters until the full hierarchical structure is obtained. Single-
linkage clustering is a particular type of agglomerative nesting which calculates the distance between
two clusters as the shortest distance between any member of one cluster to any member of another
cluster. By contrast, divisive analysis is a top-down approach which begins with a single cluster con-
taining all objects and successively sub-divides assets into smaller clusters until each cluster contains
only a single object.

Lopez de Prado (2016) performs a single-linkage (AGNES) hierarchical clustering of the correlation
matrix, which groups similar assets based on their correlation. Appendix A.1 outlines the necessary
mathematical transformations. Figure 2.1 (left panel) presents the cluster dendrogram associated
with the single-linkage clustering of a randomly drawn sample of JSE shares. Section 5.1 compares
HRP performance employing divisive analysis, as well as two bottom-up ANGES clustering techniques
(single-linkage and Ward). The top-down nature of divisive analysis is consistent with the allocation
strategy, and achieves lower out-of-sample variance under certain conditions described in Section 5.1.
The right panel of Figure 2.1 displays the cluster dendrogram for the same sample of stocks obtained
using divisive analysis.
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Figure 2.1: Example of Cluster Dendrograms, AGNES (left) and DIANA (right)

2.2. Quasi-diagonalisation

The most efficient (i.e. variance-minimising) combination of uncorrelated time series, is an inverse-
variance weighting (Lopez de Prado 2016). Thus, an inverse-variance asset allocation is most appro-
priate for assets with an approximately diagonal correlation matrix. The second step of the HRP
algorithm uses the information obtained from the clustering algorithm to transform (rearrange) the
covariance matrix into a more diagonal representation. High correlations are placed adjacently and
close to the matrix diagonal, achieving the desired quasi-diagonal structure. Figure 2.2 demonstrates
the effect by displaying the naive correlation matrix alongside the reordered matrix using single-linkage
clustering (middle) and divisive analysis (right) for the same random sample of assets used before:
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Figure 2.2: Diagonalised Correlation Matrix, untransformed (left), AGNES (middle) and DIANA (right)

Alipour et al. (2016) introduce an innovative modification to the HRP algorithm, which recasts the
clustering and quasi-diagonalisation steps as an optimisation problem. The extent of diagonalisation
can be quantified using a simple loss function L assigning larger weights to correlation coefficients
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further away from the matrix diagonal (see Appendix A.2). The authors solve the diagonalisation
problem by minimising a penalised version of L with a quantum annealing optimiser, replacing the
clustering and quasi-diagonalisation steps with a computationally costly N2-parameter binary opti-
misation task, which uncovers the most diagonal structure attainable by ‘brute force’ (Alipour et al.
2016). An alternative proposed in this paper minimizes L using the genetic permutation algorithm
outlined in Even (1973)1. Appendix A.2 describes the objective function in more detail, with the
resulting HRP allocation denoted ‘genetic HRP’ (GHRP) in this context. While the genetic optimiser
increases the computational cost vis-à-vis clustering techniques, it is possible to achieve convergence
in as little as 150-200 iterations.

2.3. Recursive Bisection

Finally, the HRP weights are calculated as the inverse-variance allocation between two clusters applied
recursively by bisecting the covariance matrix until only one asset is contained in each cluster. The
full algorithm is provided in Appendix A.3. Figure 2.3 (top-left) visualises the bisection for the first
iteration using the cluster dendrogram of the previously discussed stock sample. The assets are split
into equally sized sub-groups with the weights calculated based on the aggregate cluster variance.
An alternative risk-budgetting allocation approach is developed in Raffinot (2016), but not discussed
further here.

As shown in Figure 2.3, the naive bisection rule can violate the intuitive character of the result, by
placing similar assets into separate clusters for allocation purposes. While centered bisection yields
a symmetric allocation tree, which results in well-diversified portfolio weights, the method does not
respect empirical cluster boundaries and discards information about the hierarchical structure inferred
in the cluster algorithm. Figure 2.3 (top-left) demonstrates the concern, with the bisection separating
two closely related assets.

A modification is proposed in this paper, which permits the allocation to take the similarity of assets
into account. The allocation trades off the symmetry objective against a minimum dissimilarity
between border objects of the sub-clusters. The trade-off is characterised by a threshold τ , which
measures the relative location on the y-axis of the dendrogram above which splits may occur. In
the extreme case (τ = 1), the dissimilarity is maximised and allocation is performed exactly along
the cluster dendrogram. If τ = 0 the symmetry objective dominates resulting in a naive bisection as
in Lopez de Prado (2016). Figure 2.3 visualises different values of τ , with the extreme cases in the
top-left and bottom-right. If 0 < τ < 1, the constraint is weakly enforced and the algorithm selects
the most symmetrical allocation tree possible under the condition that assets with a certain degree of
relative similarity are not split into different clusters.

1The implementation makes use of the R-package gaoptim.
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Figure 2.3: Hierarchical Tree Splits for τ = 0− 1

As a practical matter, the recursive bisection step permits portfolio weight constraints to be intro-
duced, as recommended by Lopez de Prado (2016). The modification to the HRP algorithm proposed
in this paper enforces box and group constraints in a bottom-up manner. Violations of the constraints
are resolved at the lowest possible location on the hierarchical allocation tree, leaving preceding clus-
ter allocations unaffected and retaining relative within-cluster proportions wherever possible. The
approach is computationally highly efficient, adding negligible calculation time, and effectively iden-
tifying the weights-vector most resembling the unconstrained solution. The mathematical derivation
is provided in Appendix A.3. Figure 2.4 illustrates the constrained allocation based on the random
sample of JSE shares (weights are calculated using the portfolio backtest described in Section 4).
Groups are defined as BICS2 level 1 industries.

2Bloomberg Industry Classification System.
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Figure 2.4: Box and Group Constraint Illustration

While the emphasis of the portfolio simulations in Section 5 is placed on the performance of uncon-
strained HRP, adjunct simulations reported in Appendix B demonstrate that the findings are not
materially affected by the imposition of constraints, with the same relative performance outcomes as
in Section 5.

3. Asset Universes3

Portfolio simulations are performed using daily total return index data from 6 equity universes. Data
is obtained from Bloomberg (2017), for index samples with changing compostion based on index
membership. Table 3.1 provides an overview of the data universes:

3Section to be provided by supervisor.
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Universe Country Code No. of stocks Period
JSE All Share Index South Africa SA 255 2008-2017
S&P 500 United States US 707 2008-2017
S&P Euro Euro Area EU 225 2008-2017
FTSE 1004 United Kingdom UK 167 2008-2017
Canada Canada CA 408 2008-2017
Australia Australia AU 453 2008-2017

Table 3.1: Equity Return Universes

4. Portfolio Backtest

The out-of-sample performance of three HRP variants is benchmarked against conventional naive
and risk-based portfolio optimisation techniques. The global minimum-variance portfolio (MV) is
calculated using quadratic programming and is defined as the allocation w which satisfies:

min
w
w′Σw s.t.

∑
i

wi = 1 and w ≥ 0 (4.1)

where Σ is the assets’ covariance matrix and the constraints ensure full investment and no short sales.
The inverse-variance portfolio (IV) is the closest comparable risk parity portfolio, and is computed as:

wi = σ−2
i∑N

i=1 σ
−2
i

(4.2)

where σi is the i-th asset return standard deviation.

In addition to the risk-based methods, two naive portfolios are benchmarked: The equal weighted
portfolio is calculated with w = 1/N and the random portfolio selects weights in a completely non-
deterministic manner5. The HRP variants include single-linkage based HRP with τ = 0 (identical
to Lopez de Prado (2016)), DIANA clustering with τ = 1 (DHRP), and genetic optimisation based
clustering with τ = 1 (GHRP).

The out-of-sample performance is compared using a portfolio backtest over 10 years of daily historical

4Note: The assumption is made that this is the underlying index. Can be updated otherwise.
5The random portfolio is constructed with the R-package rportfolios.
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returns data. Weights are rebalanced at the beginning of each quarter, with covariances calculated over
a trailing 12 month period. The backtest is repeated in a Monte Carlo experiment where 1000 N -sized
portfolios are randomly sampled from each equity universe. The approach provides a robust method of
evaluating the performance of the allocation algorithms in concentrated portfolios with N = 20− 50,
making the study applicable to the South African context where relatively small portfolio sizes are
not uncommon. A global perspective is added by performing large N performance comparisons for
stocks randomly sampled from the aggregate equity universe across all regions (N = 50− 200).

Since the Monte Carlo experiment is invariably subject to survivorship bias with the sample composi-
tion remaining unadjusted over time6, the results are additionally compared in full-index samples for
4 universes (S&P 500, JSE All Share, S&P Euro & FTSE 100) with changing composition. Bootstrap
confidence intervals are calculated using iterated backtests over resampled index assets7.

The study compares algorithms using various out-of-sample performance and concentration metrics.
Risk measures include the volatility (standard deviation) of returns as well as maximum drawdown,
with additional performance perspectives obtained from the portfolios’ risk-adjusted return8 and
turnover (trading volume). Turnover is calculated as the absolute difference between the value of
end-of-day positions prior to rebalancing and positions immediately after rebalancing, as a percentage
of the total position. Portfolio concentration is measured using the Herfindahl index, and an industry
concentration measure (Herfindahl index of industry weights). The effect of sample-based variation in
industry concentration is removed by utilizing a stratified sampling technique in the Monte Carlo ex-
periment, which draws assets from a minimum of 5 different randomly selected BICS level 1 industries,
and by normalising concentration measures by the naive (equally-weighted) portfolio.

5. Discussion of results

5.1. Cluster Techniques

The objective of hierarchical clustering in the HRP algorithm, is to obtain a quasi-diagonal correlation
matrix which is theoretically amenable to inverse-variance based allocation techniques. The merits
of the clustering algorithm should thus be evaluated based on its success in generating diagonal
correlation matrices. Recognising this fundamental purpose, Section 2.3 presented a version of the
HRP algorithm, which converts the clustering and diagonalisation steps into an explicit optimisation

6The explicit objective is to test a large number of equally sized portfolios, requiring that a constant asset composition
is chosen at each draw.

7Resampling with replacement is performed at each iteration. See Alipour et al. (2016) for a more detailed description
of the bootstrap design.

8Calculated as the Sharpe Ratio, without risk-free benchmark (i.e. annualized return divided by annualized standard
deviation).
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problem, where the extent of diagonalisation (measured by L) is maximised by permutating the order
of the rows and columns in the correlation matrix. Since the objective function L is a numerical
measure of the extent of diagonalisation of the correlation matrix, it can be used to benchmark
different clustering algorithms against the optimally diagonalised correlation matrix. Figure 5.1 plots
the value of L achieved by 3 different clustering methods in addition to the GHRP genetic permutation
outcome9. The results are normalised by the mean of GHRP L-scores. The GHRP optimisation
achieves the highest extent of diagonalisation, while single-linkage clustering performs comparatively
poorly. Ward clustering achieves promising diagonalisation results.
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Figure 5.1: Normalised L-scores of Cluster Algorithms

The out-of-sample volatility under different clustering techniques using JSE equity samples with N =
20−50 is compared in Figure 5.2 for two allocation scenarios: (i) naive allocation with τ = 0 (left) and
(ii) dissimilarity-based allocation with τ = 1 (right). Under naive allocation, the choice of clustering
technique is inconsequential. This result is not surprising since the information produced by the
clustering algorithm is discarded in the allocation step. Conversely, when the cluster tree is utilised
for weight allocation, GHRP, DIANA and Ward clustering all significantly outperform single-linkage
clustering. DIANA clustering achieves almost identical results to GHRP for samples of N ≥ 40. The
top-down nature of the method makes it a good candidate for top-down dissimilarity-based allocation.
For the remainder of the paper, DIANA clustering with τ = 1 is denoted DHRP and benchmarked
against conventional HRP and GHRP.

9Results from complete- and average-linkage clustering were too similar to single-linkage clustering to warrant their
inclusion. Instead the focus is on the 3 approaches presented, which capture the most important aspects.
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Figure 5.2: Out-of-sample Volatility of Cluster Algorithms

DIANA clustering furthermore achieves a fairly high risk-adjusted return (Figure 5.3) and low turnover
(Figure 5.4). Despite its favourable L-score, the Ward algorithm does not add significant improvement
over DIANA on any metric, while single-linkage clustering performs well in terms of risk-adjusted
return. GHRP achieves superior results on both volatility and return metrics, indicating that the
hierarchical clusters extracted by genetic optimisation most completely exploit the information in
the covariance matrix. The figures illustrate the advantage of dissimilarity-based allocation, with
τ = 1 conclusively achieving better results for portfolios with N ≥ 40 (albeit with higher turnover).
Ward clustering is omitted from further performance benchmarks, as it does not significantly improve
outcomes.
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Figure 5.3: Out-of-sample Risk-adjusted Return of Cluster Algorithms
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Figure 5.4: Out-of-sample Turnover of Cluster Algorithms

5.2. Portfolio Performance: Individual Universes

Figure 5.5 plots the annualised portfolio volatility and maximum drawdown for JSE stock portfolios
with N = 50. The Monte Carlo backtest includes three variants of the HRP algorithm: (i) HRP

Page 12



A Constrained Hierarchical Risk Parity Algorithm with Cluster-based Capital Allocation

as introduced in Lopez de Prado (2016), (ii) DHRP with top-down DIANA clustering and τ = 1,
(iii) GHRP with diagonalisation solved using genetic optimisation and τ = 1. All HRP variants
outperform the IV portfolio as well as equal and random weighted portfolios. DHRP and GHRP
achieve superior risk outcomes relative to HRP, demonstrating the benefit of the modified algorithm
over standard HRP. The close similarity of DHRP and GHRP suggests that DIANA clustering may
be considered an adequate computationally efficient substitute for genetic optimisation. The MV
portfolio achieves consistently low out-of-sample volatility — a finding that stands in contrast to
Lopez de Prado (2016), who observe HRP to outperform MV using simulated returns. The sample
dependence and concomittant poor out-of-sample results of MV appear to be limited when applied to
real historical JSE data. Additional simulations (omitted here for brevity) demonstrate that the mean-
variance portfolio does indeed perform poorly out-of-sample, indicating that (as argued by proponents
of risk parity techniques) measurement error in returns as opposed to volatility is the primary source
of underperformance.
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Figure 5.5: JSE Annualised Volatility & Maximum Drawdown (N = 50)

Figure 5.6 compares the risk-adjusted return and portfolio turnover to annualised volatility for the
same portfolio simulation as above. In addition to reduced volatility, the DHRP and GHRP portfo-
lios achieve higher risk-adjusted return than standard HRP, with GHRP performing roughly on par
with MV. The additional return comes at the expense of portfolio turnover, where HRP significantly
outperforms the MV portfolio. The naive portfolio achieves the lowest turnover (as expected), and
the IV portfolio outperforms HRP in terms of turnover (but not risk-adjusted return and volatility).
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Figure 5.6: Portfolio Simulation Results (N = 50, JSE Equity Universe)

The generality of the findings is evaluated in Figure 5.7, plotting the overall portfolio volatility for
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N = 20− 50 for all 6 equity universes. The trend uncovered above is mostly confirmed: MV achieves
the lowest volatility, while HRP and particularly GHRP and DHRP outperform the remaining bench-
marked methods in most cases. The relationship is robust to different portfolio sizes, and DHRP
and GHRP are close substitutes, once again confirming the usefulness of DIANA clustering as an
alternative to direct optimisation.
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Figure 5.7: All Universes Annualised Volatility

The results for the out-of-sample risk-adjusted return in Figure 5.8 are somewhat more variable. MV
achieves high returns on the JSE, with GHRP approximately equivalent (as discussed above). In the
remaining universes, however, DHRP and GHRP outperform MV. The CA, AU and EU universes
demonstrate the value added by the modified HRP algorithms, with standard HRP underperforming
MV. IV and naive portfolios present inferior results in all cases apart from the UK, where the equally-
weighted portfolio achieves robustly high results.
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Figure 5.8: All Universes Annualised Risk-adjusted Return

Figure 5.9 plots portfolio turnover for the equity universes. The results confirm the finding that HRP
significantly reduces turnover compared to MV. GHRP is outperformed by DHRP in all cases, which
coupled with the approximately similar results on other performance metrics, confirms the usefulness
of the DHRP algorithm. The significantly lower turnover of HRP in relation to DHRP and GHRP
suggests that the symmetry-dissimilarity trade-off characterised by τ manifests as a trade-off between
out-of-sample performance (risk, return) and asset cluster stability.
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Figure 5.9: All Universes Portfolio Turnover

5.3. Portfolio Performance: Aggregate Universes

Figure 5.10 plots the volatility, risk-adjusted return and portfolio turnover for portfolios ofN = 50−200
drawn in a Monte Carlo simulation from the aggregated 6 equity universes. GHRP is omitted due to its
relative computational cost and similarity to DHRP. The results reaffirm the findings discussed above,
indicating the superior performance of DHRP over HRP, while the MV portfolio continues to perform
well in terms of volatility. The MV porftolio furthermore achieves high risk-adjusted returns for the
large N portfolios, while turnover is once again signicantly lower for HRP than MV and DHRP. The
feasibility of the MV portfolio is ensured by approximating the nearest invertible covariance matrix
according to the algorithm provided by Higham (2002).
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Figure 5.10: Global Annualised Volatility, Risk-adjusted Return and Turnover

5.4. Bootstrap results

A further robustness test is performed, which takes into accout the survivorship bias inherent in the
Monte Carlo simulation. The full-index samples are utilized to calculate portfolio backtests for each
method with sample adjustment over time to reflect index membership. A bootstrap confidence inter-
val is computed for the results, and the market-capitalisation weighted index volatility is overlayed.
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The outcomes are approximately identical to those in previous sections: DHRP outperforms HRP,
both of which achieve lower volatility than the IV portfolio as well as naive allocations. Apart from
the random portfolio, all allocations achieve lower volatility than the market-capitalisation weighted
index and the MV portfolio achieves the lowest overall volatility.
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Figure 5.11: Annualised Index Volatility

5.5. Portfolio Concentration

The extent of portfolio concentration has been a concern for quadratic programming optimisers like
the MV portfolio (DeMiguel, Garlappi, and Uppal 2009). To compare the performance of HRP against
MV, the Herfindahl indices for the portfolio and industry weights are computed for each portfolio and
plotted in Figure 5.12 (JSE universe, Monte Carlo simulation). As discussed in Section 4, the index
is normalised by the equal weighted naive portfolio, to remove sample-specific concentration effects,
highlighting instead the allocation-specific concentration. As expected, the MV portfolio performs
poorly, becoming more concentrated at higher N . This demonstrates that adding more assets does
not necessarily improve diversification. The HRP portfolio performs well on both measures, with
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the DHRP portfolio somewhat more concentrated. Industry concentration is significantly reduced at
higher N for the DHRP portfolio, with both HRP variants again significantly outperforming the MV
portfolio.
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Figure 5.12: Portfolio Concentration Metrics (top: N = 50, bottom: N = 20− 50)
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The results underscore the effectiveness of the HRP algorithm as a diversification tool. The use of
correlation clusters as the foundation for the weight-calculation ensures that concentration is stable
and almost as low as the naive equally-weighted portfolio. Viewed in conjunction with the highly com-
petitive out-of-sample performance of the algorithm, HRP offers an appealing alternative to quadratic
programming based solutions.

6. Concluding Remarks

As with other risk-based optimisation techniques, the HRP algorithm computes weights exclusively
based on the variance characteristics captured by the covariance matrix. Further enhancements to
the quality and robustness of the information contained in the covariance matrix can improve the
HRP allocation. While a detailed demonstrations exceeds the scope of this study, simulation results
suggest that significant volatility reductions can be achieved by combining DHRP with an exponen-
tially weighted multivariate GARCH estimator of the covariance matrix10. In addition, the temporal
stability of clusters can be increased (lowering portfolio turnover) by applying a shrinkage estimate of
the covariance matrix (e.g. Oracle-adjusted shrinkage). This is suggested in Raffinot (2016) and found
to yield promising results. Allocation trees with 0 < τ < 1 and multiple splits per recursive iteration
further enhance cluster stability over time compared to conventional HRP due to flatter hierarchies.

While the scope for additional enhancements naturally is vast, this paper suggests that the HRP
algorithm delivers competitive out-of-sample results over a spectrum of relevant performance metrics.
The method is useful for small and large N portfolios, as shown by the extensive simulations conducted
here. The use of dissimilarity-based recursive allocation trees permits full utilisation of the information
obtained from the clustering algorithm and unlocks additional performance improvements, positioning
DHRP and GHRP as close competitors to the MV portfolio. While DHRP and GHRP do not attain
the low levels of volatility of the MV portfolio, they generally exhibit higher return, lower turnover
and better diversification, coupled with the attractive feature of being capable of calculating weights
for singular covariance matrices. HRP with naive allocation is mostly invariant to the class of cluster
algorithm applied, and attains superior results in terms of turnover and concentration metrics. The
finding suggests that the allocation trade-off between symmetry and dissimilarity (τ = 0 vs τ = 1)
manifests in the balance between higher diversification and better risk-return characteristics of the
resulting portfolio.

10The RiskMetrics VECH model is used in simulations.
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Appendix A: HRP Algorithm

The HRP algorithm is outlined mathematically below, including various modifications to the original
method by Lopez de Prado (2016). The notation is borrowed from Lopez de Prado (2016).

A.1 Clustering

Let ρij be the correlation coefficient between assets i and j, and ρ = {ρij}i,j=1,...N represent the cor-
relation matrix. The hierarchical clustering is performed on a distance transformation of ρ, such that
dij =

√
1
2(1− ρij). The Euclidean distance between columns in {dij}i,j=1,...N is utilized in the clus-

tering algorithm. Lopez de Prado (2016) apply single-linkage agglomerative nesting to {dij}i,j=1,...N ,
a review of which can be found in Maimon and Rokach (2010) and is omitted here. Alternative clus-
tering techniques explored in this paper are the Ward method, and top-down divisive analysis (see
Maimon and Rokach (2010)). The R-package cluster is used to calculate covariance clusters.

A.2 Quasi-Diagonalisation

The quasi-diagonalisation step reorders the rows and columns in ρ such that the largest values lie
close to the diagonal. This is achieved by rearranging the matrix based on the ordering generated by
the cluster algorithm. A detailed discussion is provided in Lopez de Prado (2016).

Following Alipour et al. (2016), the step can be recast as an optimisation problem. The loss function
L is selected to measure the extent of diagonalisation of the covariance matrix, with correlation
coefficients far away from the diagonal given higher weights:

L =
∑
ij

dij(i− j)2 ∀ i, j ∈ [1, ..., N ] (6.1)

L takes on the value of zero, if ρ is a diagonal matrix. The use of {dij} in L, sets the approach
apart from Alipour et al. (2016), who propose a version of L which uses {|ρij |}i,j=1,...,N instead
of {dij}. The specification presented here ensures that the information used for the clustering and
quasi-diagonalisation steps is identical for GHRP and HRP, facilitating direct comparisons.

An allocation tree can be derived for the GHRP approach, by recursively searching over the range of N
for the split that maximises the mean absolute correlation of off-diagonal cluster blocks in the matrix
{ρij}i,j=1,...,N reflecting the optimised order, as suggested in Alipour et al. (2016). The allocation tree
is necessary when τ = 1.
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A.3 Recursive Bisection

The recursive algorithm consists of the following steps (see Lopez de Prado (2016)):

1. Initialise a list of assets in the portfolio, denoted L0

2. Initialise a vector of unit weights, wi = 1 ∀ i ∈ [1, ..., N ]
3. Stop if |Li| = 1 ∀ Li ∈ L
4. For each Li ∈ L such that |Li| > 1:

a. Split Li into two or more subsets L(j)
i preserving the order with L(1)

i ∪ · · · ∪ L
(J)
i = Li

b. Calculate the variance of L(j)
i such that Ṽ j

i = w̃j′i V
j
i w̃

j
i , where V

j
i is the covariance matrix

of elements within cluster j, and w̃ji = tr[V j
i ]−1∑

i
tr[V j

i ]−1

c. The unconstrained weight allocation is computed using the split factor αi = [Ṽ j
i ]−1∑

j
[Ṽ j

i ]−1 . The

calculation of αi is more general than Lopez de Prado (2016), in order to permit more than
one split for each Li in the hierarchy (J ≥ 2).

5. Enforce weight constraints:

a. Let α̃i = max[min[αi,
∑
i ᾱ

max
i ],

∑
i ᾱ

min
i ], where ᾱmaxi and ᾱmini are the respective 1 × N

constraint vectors
b. Now let α̃k = α̃k + |1 −

∑
i α̃i|

αk∑
k
αk

, where k denotes elements in the subset of Li with
α̃i = αi

c. Repeat step b until
∑
i α̃i = 1

6. Rescale wi by α̃i
7. Loop to step 3

The resulting α̃i satisfies two objectives: (i) it does not violate any constraints, and (ii) the weights
within the bounds set by the constraints retain their relative proportions. As such, α̃i is the constrained
allocation that is closest in proportion to the unconstrained weights αi. Furthermore, convergence is
typically achieved instantaneously or after very few iterations (depending on the complexity of the
weight constraints).

A useful feature of the method proposed above is that constraint violations are resolved as low in
the hierarchy as possible. The allocation between higher level clusters is retained in unconstrained
proportions as long as it is possible to resolve violations within sub-clusters.

The above method can easily be extended to facilitate group constraints by inserting the following
steps before step 5:

1. Define ᾱmaxi = αi

∑
j
ḡmax

j∑
j
αj

and ᾱmini = αi

∑
j
αj∑

j
ḡmin

j

, where ḡmaxi and ḡmini are the group constraints,
and j denotes that subset of elements belonging to the same group as i.

2. Continue with 5. to calculate α̃i
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Appendix B: Portfolio Backtest with Box Constraint
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Figure 6.1: SA Constrained Annualised Volatility, Risk-adjusted Return and Turnover
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